Table of contents
L.V. KIEVSKY, Doctor of Sciences (Engineering), Chief Research Scientist (mail@dev-city.ru),
A.A. SERGEYEVA, Chief Specialist (mail@dev-city.ru)
OOO NPTS «City Development» (structure 3, 19, Mira Avenue, 129090, Moscow, Russian Federation)
Renovation Planning and Solvent Demand
An assessment of the condition of the Moscow residential real estate market is made. It is shown that implementation of the renovation program, in addition
to the relocation of residents, provides the output of additional housing at the real estate market. The necessity of complex consideration of segments of the
primary and secondary housing, markets of Moscow and Moscow Oblast is substantiated. As a potential for the growth of solvent demand two components
are considered. The first one is a return to the level of solvent demand from the present 7.5% (the proportion of demand in 2016 for the primary residential
real estate within the old boundaries of Moscow) up to 11.3% (the level of 2014). This growth of solvent demand at the primary market of housing in the
renovation districts (that includes the delayed demand in these districts and additional purchase of housing by resettlers) is possible due to the redistribution
of demand among segments at the housing market of the Moscow Region. The second component is increasing the share of mortgage transactions ( market
drivers) from the present 75% up to the maximum possible level of 95%. The potential increase can be primarily concentrated in the areas of renovation. It
is also proved that the housing commissioning in the renovation districts will be limited by solvent demand of the population that is necessary to take into
account when planning.
Keywords: renovation of quarters, solvent demand, residential real estate market, urban planning policy.
For citation: Kievsky L.V., Sergeeva A.A.. Renovation planning and solvent demand. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12,
pp. 3–7. (In Russian).
References
1. Kievskiy L.V., Horkina G.А. Realization of priorities of
urban policy for the balanced development of Moscow.
Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 8,
pp. 54–57. (In Russian).
2. Levkin S.I., Kievskiy L.V. Town planning aspects of the sectoral
government programs. Promyshlennoe i grazhdanskoe
stroitel’stvo. 2012. No. 6, pp. 26–33. (In Russian).
3. Kievskiy I.L., Kievskiy L.V. Strategy of urban development of
Moscow. Integration, partnership and innovation in building
science and education. Collection of materials of the international
scientific conference. «National Research Moscow State
University of Civil Engineering». 2017, pp. 72–75. (In Russian).
4. Kievskiy I.L., Grishutin I.B., Kievskiy L.V. Distributed
reorganization of blocks (pre-project stage). Zhilishchnoe
Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 23–28.
(In Russian).
5. Kievskiy L.V. Applied organization of construction. Vestnik
MGSU. 2017. No. 3, pp. 253–259. (In Russian).
6. Kievskiy L.V. Kompleksnost’ i potok (organizatsiya zastroiki
mikroraiona) [The complexity and the flow (organization
development of the neighborhood)]. Moscow: Stroyizdat.
1987. 136 p.
7. Kievskiy L.V. Planirovanie i organizatsiya stroitel’stva
inzhenernykh kommunikatsiy [Planning and organization of
engineering communications construction]. Moscow: SvRARGUS.
2008. 464 p.
8. Kievskiy L.V., Kievskaya R.L. Impact of urban solutions
on real estate markets. Promyshlennoe i grazhdanskoe
stroitel’stvo. 2013. No. 6, pp. 27–31. (In Russian).
9. Kosareva N.B., Polidi T.D., Puzanov A.S. Zhilishchnaya
politika i ekonomika v Rossii: rezul’taty i strategiya
razvitiya. [Housing policy and economy in Russia: Results
and development strategy]. Moscow: Higher School of
Economics NRU. 2015. 387 p.
10. Kievskiy L.V. Ot organizatsii stroitel’stva k organizatsii
investitsionnykh protsessov v stroitel’stve. «Razvitie goroda»:
Sbornik nauchnykh trudov 2006–2014 gg. [From construction
management to investment process in construction
management. «City Development» collection of proceedings
2006–2014]. Moscow: SvR-ARGUS. 2014. 592 p.
11. Kievskiy L.V., Kievskaya R.L., Mareev Yu.A. The main
methodical directions of the formation of urban planning
rating. Zhilishhnoe stroitel’stvo [Housing Construction].
2015. No. 12, pp. 3–8. (In Russian).
12. Kievskiy L.V., Kievskiy I.L. Information and mapping
technologies as a tool for analysis of city development
programs. International Journal of Applied Engineering
Research. 2015. Vol. 10. No. 20, pp. 40893–40898.
13. Semechkin A.E. Sistemnyi analiz i sistemotekhnika [System
analysis and system engineering]. Moscow: SvR-ARGUS.
2005. 536 p.
14. Gusakova E.A., Pavlov A.S. Osnovy organizatsii i upravleniya
v stroitel’stve [Bases of the organization and management in
construction]. Moscow: Yurait. 2016. 318 p.
15. Oleinik P.P. Organizatsiya stroitel’nogo proizvodstva [Organization
of construction production]. Moscow: ASV. 2010. 576 p.
16. Shoshinov V.V., Sinenko S.A., Sapozhnikov V.N. Organizatsiya,
normirovanie i oplata truda na predpriyatiyakh
otrasli [The organization, regulation and compensation at the
entities of an industry]. Moscow: Slovo-Sims. 2001. 112 p.
V.I. RIMSHIN, Doctor of Sciences (Engineering) (niisf@niisf.ru), E.V. KIMJAEVA, Engineer
Moscow state university of civil engineering (National Research University) (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
Complex Renovation of «Yuzhny» Micro-district of Lobnya Urban District of Moscow Oblast
The analysis and evaluation of measures aimed at the complex renovation of the “Yuzhny” micro-district of Lobnya urban district of Moscow oblast have been
made. Depending on the level of physical deterioration and obsolescence and residual value of the development, the measures to renovate and modernize the
housing stock (overhaul, reconstruction, demolition) have been developed. For the rational organization of the system of public services in the territories of the
existing development (ordering of placement of objects and expanding of their nomenclature), the linear-nodal scheme is proposed. Main measures for improving
the transport and engineering infrastructures are presented. For preserving the basic housing stock presented by five-storey brick houses of 1-447 series, the
volumetric-planning method for reconstruction with a symmetrical broadening of the house by 3 m and a superstructure up to nine stories, which makes it possible
to eliminate structural-technical and volumetric-planning shortcomings of buildings of this series, is proposed.
Keywords: renovation, reconstruction, overhaul, demolition, new construction, micro-district.
For citation: Rimshin V.I., Kimjaeva E.V. Complex renovation of «Yuzhny» micro-district of Lobnya urban district of Moscow oblast. Zhilishchnoe Stroitel’stvo
[Housing Construction]. 2017. No. 12, pp. 8–13. (In Russian).
References
1. Grjaznov M.V., Popova M.V., Vlasov A.V., Rimshin V.I.,
Markov S.V., Sinjutin A.V. The main problems of operation of
large-panel buildings and ways of their decision. Estestvennye
i tehnicheskie nauki. 2014. No. 9–10 (77), pp. 355–357.
(In Russian).
2. Kasimov V.R., Sivokon’ Ju.V., Rimshin V.I., Semenova S.A.,
Ivanov V.V. Determination of the optimal geometric parameters
of Arena-Dnepr stadium. Estestvennye i tehnicheskie nauki.
2014. No. 9–10 (77), pp. 361–364. (In Russian).
3. Kas’janov V.F., Tabakov N.A. Experience of foreign countries
in the field of reconstruction of urban areas. Vestnik MGSU.
2011. No. 8, pp. 21–27. (In Russian).
4. Kustikova Ju.O., Rimshin V.I., Shubin L.I. Practical recommendations
and the feasibility study for the use of composite
fittings in reinforced concrete structures of buildings and
constructions. Zhilishchnoe Stroitel’stvo [Housing Construction].
2014. No. 7, pp. 14–18. (In Russian).
5. Matveeva E.A., Litvinova Ju.V., Rimshin V.I., Markov
S.V., Morozova O.V., Golubka A.I. About development
of the alternate sources of energy supply for urban areas.
Estestvennye i tehnicheskie nauki. 2014. No. 9–10 (77),
pp. 325–327. (In Russian).
6. Rimshin V.I., Ivanov V.V. Introduction of energy efficient
technologies in the design and reconstruction of urban
areas. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo
universiteta. 2014. No. 8 (91), pp. 104–109. (In Russian).
7. Rimshin V.I., Filimonova I.I. Renovation of the housing estate
and analysis of the ecological situation of Presnensky district
Moscow. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo
universiteta. 2014. No. 9 (92), pp. 126–131. (In Russian).
8. Sheina S.G., Martynova E.V., Girja M.A. Methodical bases
of energy efficient reconstruction of housing estates.
Akademicheskij vestnik UralNIIproekt RAASN. 2014. No. 4,
pp. 14–20. (In Russian).
9. Antoshkin V.D., Erofeev V.T., Travush V.I., Rimshin V.I.,
Kurbatov V.L. The problem optimization triangular geometric
line field. Modern Applied Science. 2015. Т. 9. No. 3,
pp. 46–50.
10. Bazhenov Y.M., Erofeev V.T., Rimshin V.I., Markov S.V.,
Kurbatov V.L. Changes in the topology of a concrete porous
space in interactions with the external medium. Engineering
Solid Mechanics. 2016. T. 4. No. 4, pp. 219–225.
11. Erofeev V., Karpushin S., Rodin A., Tretiakov I., Kalashnikov V.,
Moroz M., Smirnov V., Smirnova O., Rimshin V., Matvievskiy
A. Physical and mechanical properties of the cement stone
based on biocidal Portland cement with active mineral additive.
Materials Science Forum. 2016. Т. 871, pp. 28–32.
12. Erofeev V.T., Bogatov A.D., Bogatova S.N., Smirnov V.F.,
Rimshin V.I., Kurbatov V.L. Bioresistant building composites
on the basis of glass wastes. Biosciences Biotechnology
Research Asia. 2015. Т. 12. No. 1, pp. 661–669.
13. Krishan A., Rimshin V., Markov S., Erofeev V., Kurbatov V.,
The energy integrity resistance to the destruction of the longterm
strength concrete. Procedia Engineering. 2015. T. 117,
pp. 211–217.
L.A. SAKMAROVA, Candidate of Sciences (Pedagogy)
I.N. Ulianov Chuvash State University (15, Moscovsky Avenue, Cheboksary, 428015, Chuvash Republic, Russian Federation)
Retrospective Analysis of Comfort Level Development of Housing Stock in the City of Cheboksary
The article contains a retrospective analysis of the architecture of residential buildings of various construction periods by means of comparing types of houses, the
ratio of apartments by number of rooms, occupation density of apartments in correlation with the demographic structure of the city of Cheboksary with due regard
for changes in normative parameters of the level of housing provision for the population. The periodization of the development of housing stock of Cheboksary,
reflecting the stages of construction of residential buildings in 10-year intervals, is proposed. It is shown that in 1925–1970 mainly brick houses of up to 5 stories
were constructed. In 1970–1980 – large panel hoses of up to 12 stories. Since 1980, monolithic, precast-monolithic and large panel houses of over 16 stories
began to construct. In the beginning of the XXI century a need for townhouses and cottages emerged.
Keywords: affordable housing, comfort level of housing stock, large panel apartment houses, typical projects, objects of mass construction, types of flats,
architectural-planning typology, problems of city development, calculation of housing stock structure, numerical structure of family, periodization of housing
stock development.
For citation: Sakmarova L.A. Retrospective analysis of comfort level development of housing stock in the city of Cheboksary. Zhilishchnoe Stroitel’stvo [Housing
Construction]. 2017. No. 12, pp. 14–19. (In Russian).
References
1. Sakmarova L.A. Evaluation of the state of comfort of housing
housing. Materials of the VIII International Scientific and
Practical Conference «Days of Science 2012» (Prague, March
27-April 05, 2012). Construction and architecture. Praga:
Izdatel’skii dom «Obrazovanie i nauka». 2012, pp. 26–30.
2. Sakmarova L.A. Historical analysis of the development of the
level of comfort of a housing stock of mass development on
the example of Cheboksary Materials of the 7th All-Russian
(1st International) Conference «New in Architecture, Design
of Building Structures and Reconstruction» (NASKR-2012).
Cheboksary: Chuvash State University, 2012, pp. 26–31.
(In Russian).
3. Dyubek LK, Dikhter Ya.E. Novoe v zhilishchnom stroitel’stve
Moskvy [New in housing construction in Moscow]. Moscow:
Stroyizdat. 1974. 60 p.
4. Lvov I.V. Innovative modernization of the structure of housing
construction in the Chuvash republic under conditions of new
economy. Zhilishchnoe Stroitel’stvo [Housing Construction].
2017. No. 10, pp. 41–45. (In Russian).
5. Buzyrev V.V., Selyutina L. G. Gilishnaya problema I puti
resheniya [The housing problem and its solutions in modern
conditions]. Saint Petersburg: SPbGEU. 2013. 335 p.
6. Radionov D.G., Afanasyev A.Y., Gorovoj A.A. Regional
cluster policy in the context of the management of the
development of the regional economy. Mir Economiki Prava.
2014. No. 4–5, pp. 19–30. (In Russian).
7. Granik Yu.G. Zavodskoe proizvodstvo jelementov
polnosbornyh domov [Factory production of elements of
prefabrication houses]. Moscow: Stroyizdat. 1984. 222 p.
8. Antipov D.N. Strategy of development of the enterprises
of industrial housing construction. Problemy Sovremennoi
Ekonomiki. 2012. No. 1, pp. 267–270. (In Russian).
9. Travush V.I., Volkov Yu.S. Common problems of construction
science and production, unification and standardization in
construction. Vestnik MGSU. 2014. No. 3, pp. 7–14. (In Russian).
10. Yudin I.V., Petrova I.V., Bogdanov V.F. Improvement of
constructive solutions, technology and organization of
construction of large-panel and panel-frame houses of Volga
DSK. Stroitel’nye Materialy [Construction materials]. 2017.
No. 3, pp. 4–8. (In Russian).
11. Granev V.V., Kodysh E.N. Development and updating
of normative documents on design and construction of
industrial and civil buildings. Promyshlennoe i Grazhdanskoe
Stroitel’stvo. 2013. No. 3, pp. 9–12. (In Russian).
12. Nikolaev S.V. The revival of large-panel housing construction
in Russia. Zhilishhnoe Stroitel’stvo [Housing Construction].
2012. No. 4, pp. 2–8. (In Russian).
13. Nikolaev S.V. Panel and Frame Buildings of New Generation.
Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013.
No. 8, pp. 2–9. (In Russian).
14. Sokolov N.S. Technological methods of the device
purovektsionnyh piles with multiplies broadening. Zhilishhnoe
Stroitel’stvo [Housing Construction]. 2016. No. 10,
pp. 54–59. (In Russian).
15. Sokolov N.S. Criteria of economic efficiency of drilling piles
use. Zhilishhnoe Stroitel’stvo [Housing Construction]. 2017.
No. 5, pp. 34–38. (In Russian).
16. Sokolov N.S. The use of drilling-injection piles-ERT as the
foundations of the foundations of high bearing capacity.
Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2017. No. 8,
pp. 74–79. (In Russian).
S.V. FEDOSOV1, Doctor of Sciences (Engineering), Academician of RAACS, President (prezident@ivgpu.com); V.G. KOTLOV2, Candidate of Sciences
(Engineering), Counsellor of RAACS (KotlovVG@volgatech.net), M.A. IVANOVA 2, Engineer (mashasmils@yandex.ru)
1 Ivanovo State Polytechnical University (20, Mart 8-th Street, Ivanovo, 153037, Russian Federation)
2 Volga State University of Technology (3, Lenin Square, Yoshkar-Ola, Republic of Mari El, 424000, Russian Federation)
The Reasons of Performance Impairment of Wooden Structures During Operation in an Environment with
Cyclically Changing Temperature and Humidity Conditions
The article presents an overview of the main characteristics of wooden structures of buildings and facilities formed during their operation in an environment with
cyclically changing values of temperature and humidity. These characteristics have a significant effect on the operation of structures after their intended use. In
this context the aim of this article is to determine the main reasons of decrease of wooden structures operation capacity during exploitation. To achieve the aim the
influence of constructive system, type of connections, quality of performance, quality of materials, and magnitude of load on the stage of wooden structures and its
work in the process of exploitation is studied. It is revealed that in addition to these factors, parameters of the environment surrounding the structures, temperature
and relative air humidity namely, are important. Criteria for selecting the type of the structure depending on operational conditions have been determined. It is
established that one of the reasons for decay of wooden elements is condensation processes, more complicated than the processes of drop-liquid humidification.
Differences between differential condensation, systematic condensation and cyclic process of condensation have been revealed. The effect of the temperature
hysteresis on the process of moisture penetration in the wood has been determined. The aim of the further studies is to determine the effect of temperaturehumidity
parameters of the external environment on the strength of wooden structures in various buildings with due regard for improving their durability.
Keywords: wooden structures, operation of structure, operational characteristics, condensation processes, temperature hysteresis.
For citation: Fedosov S.V., Kotlov V.G., Ivanova M.A. Principles of formation of main operational characteristics of wooden structures under cyclic changing
parameters of external environment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 20–25. (In Russian).
References
1. Zhadanov V.I., Ukrainchenko D.A., Inzhutov I.S., Afanas’ev
V.E. Algorithms of shaping and designing of the combined
block constructions on the basis of wood. Vestnik
Povolzhskogo gosudarstvennogo technologicheskogo
universiteta. Materialy. Konstrukcii. Tehnologii. 2017. No. 2,
pp. 53–64. (In Russian).
2. Turkovsky S.B., Pogoreltsev A.A. Development of wooden
structures of TSNIISK system based on inclined stuck-in
rods. Promyshlennoe i grazhdanskoe stroitel’stvo. 2007.
No. 3, pp. 6–8. (In Russian).
3. Rimshin V.I., Labudin B.V., Melehov V.I., Popov E.V.,
Roshhina S.I. Dowel and washer connections for elements of
wooden structures. Vestnik MGSU. 2016. No. 9, pp. 35–50.
(In Russian).
4. Vodjannikov M.A., Vorob’ev A.V. Analysis of wood structure
connections using cylindrical steel and carbon fiber dowel
pins. Vestnik Permskogo nacional’nogo issledovatel’skogo
politehnicheskogo universiteta. Prikladnaja jekologija.
Urbanistika. 2017. No. 1, pp. 159–169. (In Russian).
5. Kirjutina S.E. Maintenance quality level of wooden houses.
Walls’ subsidence issues. Vestnik grazhdanskih inzhenerov.
2016. No. 2, pp. 33–37. (In Russian).
6. Smirnova E.V. Modern devices for diagnostics and quality
control of wooden structures. Intellectual property and modern
technology and technologies for economic development:
materials of the third Republican youth scientific and practical
conference in the framework of the All-Russian student forum
«Engineering cadres – the future of the innovative economy
of Russia». Yoshkar-Ola. 2015, pp. 114–117. (In Russian).
7. Kirjutina S.E. Relevance of developing the quality control
system of wooden designs of buildings under construction.
Vestnik grazhdanskih inzhenerov. 2015. No. 2, pp. 48–52.
(In Russian).
8. Malyhina V.S., Denisov A.N. Modern wooden
construction. Vestnik Belgorodskogo gosudarstvennogo
tehnologicheskogo universiteta im. V.G. Shuhova. 2017.
No. 5, pp. 30–36. (In Russian).
9. Shhegoleva Je.V. Ecological building with use of wood as the
main construction material. Nauchnyj vestnik Voronezhskogo
gosudarstvennogo arhitekturno-stroitel’nogo universiteta.
Serija: Innovacii v stroitel’stve. 2017. No. 3, pp. 142–149.
(In Russian).
10. Smorchkov A.A., Kereb S.A., Dubrakov S.V. Accounting
of long-term loading when calculating wooden structures.
Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 3,
pp. 64–66. (In Russian).
11. Kabanov V.A., Masalov A.V. Fracture toughness of glulam
elements under sustained loading. Izvestija Jugo-Zapadnogo
gosudarstvennogo universiteta. 2016. No. 4, pp. 96–102.
(In Russian).
12. Lin’kov N.V. Stress-strain state of cross section wooden
beams on composite connections at long-term load.
Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 7,
pp. 44–48. (In Russian).
13. Jarcev V.P., Buchneva E.M., Dolzhenkova M.V., Bljum A.V.
Influence of impregnation on operational characteristics
of timber products and structures. Vestnik Tambovskogo
gosudarstvennogo tehnicheskogo universiteta. 2016. Vol.
22. No. 1, pp. 150–157. (In Russian).
14. Fedosov S.V. Teplomassoperenos v tehnologicheskih
processah stroitel’noy industrii: monografiya. [Heat and
mass transfer in technological processes of the construction
industry: monograph] Ivanovo: IPK «PresSto». 2010. 364 p.
15. Alojan R.M., Fedosov S.V., Mizonov V.E. Teoreticheskie
osnovy matematicheskogo modelirovanija mehanicheskih
i teplovyh processov v proizvodstve stroitel’nyh materialov:
monografiya [Theoretical foundations of mathematical
modeling of mechanical and thermal processes in the
production of building materials: monograph]. Ivanovo:
IGASU. 2011. 256 p.
16. Kljueva N.V., Dmitrieva K.O. Issues of sustainable rod
elements design systems of different wood species in
force and environmental loading moisture. Stroitel’stvo i
rekonstrukcija. 2016. No. 5, pp. 60–68. (In Russian).
17. Lin’kov V.I. Deformability of wooden elements connections
on the inclined screwed rods. Nauchno-tehnicheskij vestnik
Povolzh’ja. 2013. No. 5, pp. 247–250. (In Russian).
18. Orlovich R.B., Gil’ Z., Dmitriev P.A. Tendencies in the
development of wood structures joints abroad. Izvestija
vysshih uchebnyh zavedenij. Stroitel’stvo. 2004. No 11,
pp. 4–9. (In Russian).
19. Fedosov S.V., Kotlov V.G., Ivanova M.A. Influence of
operation conditions on the state of wood of truss structures.
The second international scientific and technical conference,
dedicated to the 45th anniversary of the architecture and
construction faculty of the OSU «Innovative construction
technologies. Theory and practice»: materials of conference.
Orenburg. 2015, pp. 371–374. (In Russian).
20. Sheshukova N.V., Mihajlov B.K. Development of methods for
forecasting wood deformability taking into account humidity.
Izvestija vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2007.
No. 1, pp. 88–93. (In Russian).
21. Stroganov V.F., Boichuk V.A., Sagadeev E.V. Biodeterioration
of wooden materials and structures. Izvestija Kazanckogo
gosudarstvennogo architekturno-stroitel’nogo universiteta.
2014. No. 2, pp. 185–193. (In Russian).
22. Kotlov V.G., Fedosov S.V., Kuznecov I.L. Influence of the
operation regime on the work of wooden structures with
connections on metal dowels. Program. Abstracts of the
66th All-Russian scientific conference. Kazan. 2014, p. 51.
(In Russian).
23. Fedosov S.V., Kotlov V.G., Aloyan R.M., Yasinski F.N.,
Bochkov M.V. Simulation of heat-and-mass transfer in
gas-solid system at nailed connection of timber structures
elements. Part 1. General physical-mathematical statement
of problem. Stroitel’nye Materialy [Construction materials].
2014. No. 7, pp. 86–91. (In Russian).
V.V. BABANOV1,2, Candidate of Sciences (Engineering) (babanov_vladimir@mail.ru), N.A. EVSEEV1,2, Engineer
1 Saint-Petersburg State University of Architecture and Civil Engineering (4, 2-ya Krasnoarmeiskaya Street, 190005, Saint-Petersburg, Russian Federation)
2 OOO «PI Georeconstruction» (4, Off.414, Izmaylovsky Avenue, 190005, Saint-Petersburg, Russian Federation)
Sizing of Stiffness Parameters of Reinforced Concrete Structures
in Finite-Element Dynamic Calculation of Facilities
The article presents results of the numerical analysis of the design scheme of a large-span reinforced concrete structure. The aim of calculation was to determine
the frequency of the first tone of own vibrations of the facility which seemed the most dangerous among the causes of occurrence of resonance phenomena.
Presented results of the checking dynamic calculation of the large-span structure were compared with the data of in-place tests of the structure that made it
possible to establish the correctness of sized stiffness parameters of the calculation scheme. On the basis of the work conducted, it is established that for
evaluating the frequency of own vibrations of the structure for matching the results of observations, the stiffness of finite elements in the numerical calculation
should take into account the dynamic modulus of concrete elasticity. The checking of applicability of various formulas of approximation of the «initial – dynamic
modulus of elasticity» dependence for assigning a value of the dynamic modulus of concrete elasticity in numerical calculations is also made.
Keywords: stiffness of reinforced concrete structures, numerical analysis of structural schemes, verification of numerical calculations.
For citation: Babanov V.V., Evseev N.A. Sizing of stiffness parameters of reinforced concrete structures in finite-element dynamic calculation of facilities.
Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 26–29. (In Russian).
Список литературы / References
1. Neville A. M. Properties of Concrete. New York: John Wiley
and Sons, 2000. 620 р.
2. Kumar M. Concrete Structure Properties and Materials. New
Jersey: Englewood Cliffs, 1986. 450 р.
3. Popovics J.S. Verification of relationships between
mechanical properties of concrete like materials. Materials
and Structures. 1975. Vol. 8. No. 45, pp. 183–191.
4. Shkolnik I.E. Evaluation of dynamic strength of concrete from
results of static tests. Journal of Engineering Mechanics.
1996. Vol. 122 (12), pp. 135–138.
5. Lydon F.D., Balendran R.V. Some Observations on Elastic
Proper-ties of Plain Concrete. Cement and Concrete
Research. 1986. Vol. 16. No. 3, pp. 312–324.
6. Несветаев Г.В., Халезин С.В. Деформационные свой
ства бетонов с каркасной структурой // Науковедение.
2015. № 4. C. 11–13.
6. Nesvetaev G.V., Khalezin S.V. The deformation properties
of concrete with contact structure of coarse aggregate.
Naukovedenie. 2015. No. 4, pp. 11–13. (In Russian).
7. Popovics J.S. A Study of Static and Dynamic Modulus of
Elasticity of Concrete. ACI-CRC Final Report. 2008.
8. Salman Mohammed M., The Ratio between Static and
Dynamic Modulus of Elasticity in Normal and High Strength
Concrete. Journal of Engineering and Development. 2006.
Vol. 10. No. 2. pp.163–174.
9. Евсеев Н.А. Учет физической нелинейности железобе
тонных конструкций при численных расчетах конструк
тивных систем // Вестник гражданских инженеров. 2017.
№ 5. С. 66–70.
9. Evseev N.A. Accounting of physical nonlinearity of reinforced
concrete structures at computation of structural systems.
Vestnik grazhdanskikh inzhenerov. 2017. No. 5, pp. 66–70.
(In Russian).
L.M. DOBSHITS, Doctor of Sciences (Engineering) (levdobshits@yandex.ru)
Russian University of Transport (9, bldg. 9, Obraztsova Street, 127994, Moscow, Russian Federation)
Physical-Mathematical Model of Concretes Destruction at Alternate Freezing and Thawing
The physical-mathematical model of the concrete behavior under cyclic freezing and thawing in the water-saturated state is proposed. Dependences of changing
the humidity, temperature, and pressure in concrete at its alternate freezing and thawing have been obtained. Main factors determining the frost resistance of
cement concretes have been revealed. Methods of control over these factors are shown. It is established that the number of cycles when the concrete destruction
occurs according to the developed physical-mathematical model practically coincides with the number of cycles of alternate freezing determined experimentally
that makes it possible to predict the frost resistance of concrete without conducting the cycles of alternate freezing and thawing and refuse from long-lasting and
expensive tests. The processes occurring when testing concrete samples don’t fully correspond to those which occur when freezing concrete structures if the
thickness of the structure is over 30–40 cm. It is shown that it is possible to appoint differentially the design grades on frost resistance for various places of the
same structure that makes it possible to reduce expenditures for construction of many objects.
Keywords: prediction, durability, concrete mix, mathematical model, porosity, frost resistance, water impermeability, concrete, reinforced concrete.
For citation: Dobshits L.M. Physical-mathematical model of concretes destruction at alternate freezing and thawing. Zhilishchnoe Stroitel’stvo [Housing Construction].
2017. No. 12, pp. 30–36. (In Russian).
References
1. Dobshits L.M. Ways to improve the durability of concretes.
Stroitel’nye Materialy [Construction Materials]. 2017. No. 10,
pp. 4–9. (In Russian).
2. Sheykin A.E., Dobshits L.M. Tsementnye betony vysokoi
morozostoikosti [Cement concrete of high frost resistance].
Moscow: Stroyizdat. 1989. 128 p.
3. Sheykin A.E. Stroitel’nye materialy [Construction materials].
Moscow: Stroyizdat. 1988. 432 p.
4. Kuntsevich O.V. Betony vysokoi morozostoikosti dlya sooruzhenii
Krainego Severa [Concrete of high frost resistance
for constructions of Far North]. Leningrad: Stroyizdat.
1983. 132 p.
5. Sheykin A.E., Dobshits L.M. About communication of criterion
of frost resistance with real frost resistance of concrete. Beton
i Zhelezobeton. 1981. No. 1, pp. 19–20. (In Russian).
6. Sheykin A.E., Dobshits L.M., Baranov A.T. Criteria of frost
resistance of cellular concrete of autoclave curing. Beton i
Zhelezobeton. 1986. No. 5, pp. 31–32. (In Russian).
7. Dobshits L.M. Bases of increase in durability of concrete for
transport constructions. Ensuring quality of reinforced concrete
of transport constructions. Scientific works of JSC TSNIIS.
Moscow: JSC TSNIIS, 2006. Issue 236, pp. 51–62. (In Russian).
8. Davidson M.G. Vodonepronitsaemyi beton [Waterproof
concrete]. Leningrad: Lenizdat. 1965. 98 p.
9. Kolokolnikova E.I. Dolgovechnost’ stroitel’nykh materialov (beton
i zhelezobeton) [Durability of construction materials (concrete and
reinforced concrete)]. Moscow: Vysshaya shkola. 1975. 159 p.
10. Gorchakov G.I. Povyshenie morozostoikosti i prochnosti
betona [Increase in frost resistance and durability of
concrete]. Moscow: Promstroyizdat. 1956. 107 p.
11. Shestoperov S.V. Dolgovechnost’ betonov [Durability of
concrete]. Moscow: Avtotransizdat. 1976. 267 p.
12. Dobshits L.M. Portnov I.G. Physical and mathematical
modeling of destruction of concrete at his cyclic freezing
thawing. Durability and protection of designs against
corrosion. Materials of the international conference. Moscow.
1999, pp. 113–118. (In Russian).
13. Dobshits L.M. Ways of receiving frost-resistant concrete
of transport constructions. Zheleznodorozhnyi transport.
Stroitel’stvo. Proektirovanie. 2000. No. 1, pp. 1–38. (In Russian).
14. Dobshits L.M. Bases of receiving durable concrete.
Collection of works of the All-Russian scientific and practical
conference. Construction materials science. Theory and
practice. Moscow: SIP RIA. 2006, pp. 39–45.
A.V. SOSNIN, Engineer (seism.estim.lab@mail.ru)
Scientific and research laboratory of design outcomes safety estimation and earthquake resistance of building structures
(13a, Lenina Street, Smolensk, 214000, Russian Federation)
Infobase and Formula of a Two-Step-State Computation Technique
of RC Earthquake-Resistance Frame Systems using the Pushover Analysis Conception
To memory of my research supervisor Victor G. Bednyakov
A formulation of an applied earthquake-resistance estimation technique for RC frame building is presented by the author. A feature of the technique is a patterning
of an analysis algorithm for research objects by dividing it into consecutive steps (stages). The subject field novelty consists in forming computation stages not only
taking into account a strength of earthquake action but also for separating of a calculation procedure of RC members reinforcement parameters under seismic loads.
The considered approach takes into account that in correctly calculated and designed RC members at a strong (rare) earthquake only hinge zones are damaged as
rule. It is suggested that parameters of longitudinal reinforcement of RC members to determine under operating loads and weak (frequent) earthquakes combinations
using the Response Spectrum Technique in Seismic Building Design Code SNiP II-7–81* (2000 ed.) formulation (with Seismic-Force-Reduction Factor K1 equal to
unity). And under strong a (rare) earthquake the author offers to estimate an authenticity of hinges zones computational parameters and their web reinforcement
congestion using a convenient nonlinear static (Pushover) analysis procedure (NSP). The technique formulation is preceded by a review of general features of NSPs
which constitute the foundation of Pushover-based methodology, and the ontology of Russian two-step-state design experience of earthquake resistance structures.
Keywords: MCE-earthquake specified event (in SP 14.13330 formulation); frame buildings and structures; earthquake-resistance estimation technique; twostep-
state computation concept; Pushover curve; Pushover analysis.
For citation: Sosnin A.V. Infobase and formula of a two-step-state computation technique of RC earthquake-resistance frame systems using the pushover
analysis conception . Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 37–49. (In Russian).
Список литературы / References
1. Соснин А.В. Об уточнении коэффициента допускаемых
повреждений K1 и его согласованности с концепцией ре-
дукции сейсмических сил в постановке спектрального
метода (в порядке обсуждения) // Вестник гражданских
инженеров. 2017. № 1(60). С. 92–116.
1. Sosnin A.V. About refinement of the seismic-force-reduction
factor (K1) and its coherence with the concept of seismic
response modification in formulation of the spectrum method
(in order of discussion). Vestnik grazhdanskikh inzhenerov.
2017. No. 1(60), pp. 92–116. (In Russian).
2. Соснин А.В. Об особенностях методологии нелинейного
статического анализа и его согласованности с базовой
нормативной методикой расчета зданий и сооружений
на действие сейсмических сил // Вестник ЮУрГУ. Се-
рия «Строительство и архитектура». 2016. Т. 16. № 1.
С. 12–19. DOI:10.14529/build160102.
2. Sosnin A.V. On peculiarities of the nonlinear static analysis
and its coordination with the standard calculation procedure
of buildings and structures under seismic loads. Vestnik
YUUrGU. Seriya «Stroitel’stvo i arhitektura». 2016. Vol. 16.
No. 1, pp. 12–19. DOI:10.14529/build160102. (In Russian).
3 Соснин А.В. О параметрах диафрагм жесткости железо-
бетонных каркасных зданий для строительства в сейс-
мических районах (по результатам расчетов многоэтаж-
ного жилого здания методом нелинейного статического
анализа в SAP2000) // Жилищное строительство. 2016.
№ 4. С. 17–25.
3. Sosnin A.V. About shear walls parameters of reinforced
concrete frame buildings for erecting in seismic areas (on
calculation of results of a multi-storey residential building by
pushover analysis using software SAP2000). Zhilishchnoe
Stroitel’stvo [Housing Construction]. 2016. No. 4, pp. 17–25.
(In Russian).
4. Джинчвелашвили Г.А., Соснин А.В. Анализ некоторых
особенностей учета нелинейной работы конструкций
в нормативных документах по сейсмостойкому строи-
тельству // Подсекция «Строительная механика и теория
надежности конструкций» 71-й Научн.-методич. и на-
учн.-исслед. конф. (с международным молодежным уча-
стием). Тезисы докладов. 29 января – 7 февраля 2013.
Москва: МАДИ. С. 67–69.
4. Dzhinchvelashvili G.A., Sosnin A.V. Analysis of some
features of the account of nonlinear work of structures in the
regulatory documents on earthquake-resistant construction.
Subsection «Construction mechanics and theory of structural
reliability» 71st Scientific-methodical and scientific-research
conference (with international youth participation). Theses of
reports. January 29 – February 7, 2013. Moscow: MARCSTU
(MADI), pp. 67–69. (In Russian).
5. Rosenblueth E., Herrera I. On a Kind of Hysteretic Damping.
Journal of Engineering Mechanics Division ASCE. 1964.
No. 90, pp. 37–48.
6. Gülkan P., Sozen M.A. Inelastic responses of reinforced
concrete structures to earthquake motions. Journal of the
American Concrete Institute. 1974. Vol. 71, pp. 604–610.
7. Freeman S.A., Nicoletti J.P., Tyrell J.V. Evaluations of existing
buildings for seismic risk: a case study of Puget Sound Naval
Shipyard, Bremerton, Washington. Proceedings of the U.S.
National Conference of Earthquake Engineering. EERI.
Berkeley. California. 1975, pp. 113–122.
8. Соснин А.В. К вопросу учета диссипативных свойств
многоэтажных железобетонных каркасных зданий
массового строительства при оценке их сейсмостойко-
сти // Современная наука и инновации. 2017. № 1 (17).
С. 127–144.
8. Sosnin A.V. To the issue of taking into account the dissipative
properties of multi-storey reinforced-concrete frame
buildings of mass construction in assessing their seismic
resistance. Sovremennaya nauka i innovatsii. 2017. No. 1 (17),
pp. 127–144. (In Russian).
9. Fajfar P., Fischinger M. N2 – a method for non-linear seismic
analysis of regular buildings. Proceedings of the 9-th World
Conference on Earthquake Engineering. Tokyo, Japan.
1988. Vol. 5, pp. 111–116.
10. Fajfar P., Gaspersic P. The N2 method for the seismic
damage analysis of rc buildings. Earthquake Engineering
and Structural Dynamics. 1996. Vol. 25, pp. 31–46.
11. Kilar V., Fajfar P. Simplified push-over analysis of building
structures. Proceedings of the 11-th World Conference of
Earthquake Engineering. 1996. No. 11, p. 8.
12. Fajfar P. Capacity-spectrum method based on inelastic
demand spectra. Earthquake Engineering and Structural
Dynamics. 1999. Vol. 28, pp. 979–993.
13. Chopra A.K., Goel R.K. A modal pushover analysis
procedure for estimating seismic demands for buildings.
Earthquake Engineering and Structural Dynamics. 2002.
Vol. 31, pp. 561–582. DOI: 10.1002/eqe.144.
14. Chopra A.K., Goel R.K. Modal pushover analysis procedure
to estimate seismic demands for unsymmetric-plan buildings:
theory and preliminary evaluation. Report No. EERC 2003-08;
Earthquake Engineering Research Center. University of
California, 2003. 54 p.
15. Chopra A.K., Goel R.K., Chintanapakdee C. Evaluation of a
modified MPA procedure assuming higher modes as elastic
to estimate seismic demands. Earthquake Spectra. 2004.
Vol. 20. No. 3, pp. 757–778. DOI:10.1193/1.1775237.
16. Aydinoglu N.M., Kacmaz U. Strength based displacement
amplification spectra for inelastic seismic performance
evaluation. Report No. 2002/2; Department of Earthquake
Engineering, Kandilli Observatory and Earthquake Research
Institute. Bogazici University, Istanbul, Turkey. 2002. 32 p.
17. Ramirez O.M., Constantinou M.C., Whittaker A.S.,
Kircher C.A., Johnson M.W., Chrysostomou C.Z. Validation
of the 2000 NEHRP provisions’ equivalent lateral force
and modal analysis procedures for buildings with damping
systems. Earthquake Spectra. 2003. Vol. 19. No. 4,
pp. 981–999.
18. Ruiz-Garcia J., Miranda E. Inelastic displacement ratios for
evaluation of existing structures. Earthquake Engineering &
Structural Dynamics. 2003. Vol. 32. No. 8, pp. 1237–1258.
19. Chopra A.K., Chintanapakdee C. Inelastic deformation ratios
for design and evaluation of structures: single-degree-offreedom
bilinear systems. Journal of Structural Engineering.
2004. Vol. 130. No. 9, pp. 1309–1319.
20. Aydinoğlu M.N. An incremental response spectrum analysis
procedure on inelastic spectral displacements for multi-mode
seismic performance evaluation. Bulletin of Earthquake
Engineering. 2003. Vol. 1. Iss. 1, pp. 3–36.
21. Jan T.S., Liu M.W., Kao Y.C. An upper-bound pushover
analysis procedure for estimating the seismic demands ofhigh-rise buildings. Engineering Structures. 2004. Vol. 26.
Iss. 1, pp. 117–128.
22. Fajfar P, Marusic D, Perus I. Torsional effects in the pushoverbased
seismic analysis of buildings. Journal of Earthquake
Engineering. 2005. Vol. 9 (6), pp. 831–854.
23. Powell G.H. Static pushover methods – explanation,
comparison and implementation. The 8-th US National
Conference on Earthquake Engineering. San Francisco.
2006. p. 10.
24. Kalkan E., Kunnath S.K. Adaptive modal combination
procedure for nonlinear static analysis of building structures.
ASCE, Journal of Structural Engineering. 2006. Vol. 132.
No. 11, pp. 1721–1731.
25. Poursha M., Khoshnoudian F., Moghadam A.S. A consecutive
modal pushover procedure for estimating the
seismic demands of tall buildings. Engineering Structures.
2009. Vol. 31, pp. 591–599.
26. Yasrebinia Y., Poursharifi M. Investigation the 3D-pushover
analysis of unsymmetrical concrete structures. The 15-th World
Conference on Earthquake Engineering. Lisbon, Portugal.
2012. p. 9.
27. Tehrani M.H., Khoshnoudian F. Extended consecutive modal
pushover procedure for estimating seismic responses of oneway
asymmetric plan tall buildings considering soil-structure
interaction. Earthquake Engineering and Engineering
Vibration. 2014. Vol. 13, pp. 487–507. DOI: 10.1007/s11803-
014-0257-6.
28. Jinu Mary M., Cinitha A., Umesha P.K., Nagesh R.I.,
Eapen S. Seismic response of RC building by considering
soil structure interaction. International Journal of Structural
and Civil Engineering Research (IJSCER). 2014. Vol. 3.
No. 1, pp. 160–172.
29. Wang F., Sun J.-G., Zhang N. An Improved multidimensional
MPA procedure for bidirectional earthquake excitations.
Scientific World Journal. 2014. Article ID 320756.
DOI:10.1155/2014/320756.
30. Belejo A., Bento R. Evaluating the efficiency of recent
nonlinear static procedures on the seismic assessment of an
asymmetric plan building. Computational Methods, Seismic
Protection, Hybrid Testing and Resilience in Earthquake
Engineering. Part of the GGEE book series. Vol. 33,
pp. 307–323.
31. Khoshnoudian F., Kiani M. Modified consecutive modal
pushover procedure for seismic investigation of one-way
asymmetric-plan tall buildings. Earthquake Engineering and
Engineering Vibration. 2012. Vol. 11. Iss. 2, pp. 221–232.
32. Khoshnoudian F., Kiani M., Yang T.Y. A New pushover
procedure for two-way asymmetric-plan tall buildings under
bidirectional earthquakes. The Structural Design of Tall and
Special Buildings. 2014. Vol. 23. Iss. 14, pp.1097–1117.
DOI: 10.1002/tal.1110.
33. Соснин А.В. Об алгоритме уточнения коэффициента
допускаемых повреждений K1 по кривой несущей спо-
собности для проектирования железобетонных каркас-
ных зданий массового строительства в сейсмических
районах // Жилищное строительство. 2017. № 1–2.
С. 60–70.
33. Sosnin A.V. About a refinement procedure of seismic-forcereduction
factor K1 using a pushover curve for earthquakeresistance
estimation of RC LSC frame buildings.
Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017.
No. 1–2, pp. 60–70. (In Russian).
34. Бирбраер А.Н. Расчет конструкций на сейсмостойкость.
СПб.: Наука, 1998. 255 с.
34. Birbraer A.N. Raschet konstruktsiy na seismostoikost’
[Earthquake-resistance estimation of structures]. Saint
Petersburg: Nauka. 1998. 255 p.
35. Уздин А.М. Что скрывается за линейно-спектральной
теорией сейсмостойкости // Сейсмостойкое строитель-
ство. Безопасность сооружений. 2009. № 2. С. 18–22.
35. Uzdin A.M. What lies behind the linear-spectral theory
of seismic resistance. Seysmostoykoe stroitel’stvo.
Bezopasnost’ sooruzheniy. 2009. No. 2, pp. 18–22.
(In Russian).
36 НП-031-01. Нормы проектирования сейсмостойких атом-
ных станций. М.: НТЦ ЯРБ. 2001. 48 с.
36. Normy proektirovaniya seysmostoykih atomnyh stanciy
[NP-031-01. The design standard of earthquake-resistant
nuclear power plants]. Moscow: Scientific and Technical
Center for Nuclear and Radiation Safety. 2001. 48 p.
37. The M 6.3 Christchurch, New Zealand, Earthquake of
February 22, 2011. Learning from Earthquakes, EERI
Special Earthquake Report. Comerio M. et al. 2011. 16 p.
38. Jian S.K., Murty C.V.R. Proposed draft provisions and
commentary on indian seismic Code IS1893 (Part 1. Criteria
for Earthquake resistant design of structures and buildings.
General provisions). 2002. 158 p.
39. Wang Y.A New round of updation of seismic design code
of China. The 14-th World Conference on Earthquake Engineering.
October 12–17. 2008. Beijing, China. 2008. 6 p.
40. Pourzanjani M. Seismic Design Criteria & Requirements
Per CBC 2007. 2008. 61 p. URL: http://www.icclabc.org/
uploads/Seismic_Design_Criteria_2007_CBC_by_Mehran_
Pourzanjani.pdf
41. Килимник Л.Ш. К разработке методики оценки предель-
ных состояний многоэтажных каркасных зданий при
сейсмических воздействиях // Труды центрального на-
учно-исследовательский института строительных кон-
струкций имени В.А. Кучеренко. 1975. Вып. 44. С. 66–82.
41. Kilimnik L.Sh. To development of a limit-states-estimation
methodology of multi-storey frame buildings under seismic
loads. Proceedings of the Central Research Institute of
Building Constructions named after V.A. Kucherenko. 1975.
Vol. 44, pp. 66–82. (In Russian).
42. Мартемьянов А.И. Инженерный анализ последствий
землетрясений 1946 и 1966 гг. в Ташкенте. Ташкент:
ФАН, 1967.
42. Martem’yanov A.I. Inzhenernyj analiz posledstvij
zemletryasenij 1946 i 1966 gg. v Tashkente [Engineering
analysis of the consequences of earthquakes in 1946 and
1966 in Tashkent]. Tashkent: FAN. 1967.
43. Ашканадзе Г.Н. и др. Рекомендации по расчету и кон-
струированию монолитных и панельных жилых зданий
для сейсмических районов. М.: ЦНИИЭП жилища, 1985.
101 с.
43. Ashkanadze G.N and others. Rekomendacii po raschyotu
i konstruirovaniyu monolitnyh i panel’nyh zhilyh zdanij dlya
sejsmicheskih rajonov [Guidelines for Computation and
Structural Design of Monolithic and Precast Panel Residential
Buildings for Seismic Areas]. Moscow: CNIIEHP zhilishcha.
1985. 101 p.
44. Seismic Design of Concrete Structures. Preliminary Draft of
an Appendix to the CEB-FIP Model Code. No. 133. Paris:
Bull, CEB. 1986.
45. Seismic Hazard and Building Vulnerability in Post-Soviet
Central Asian Republics ed. by S.A. King, V.I. Khalturin, B.E.
Tucker. NATO Advanced Science Institute Series, 1999,
251 p.: Rzhevsky V. The December 7, 1988 Spitak, Armenia
Earthquake: Results of Analysis of Structural Behavior,
pp. 197–229.
46 Уздин А.М., Кузнецова И.О., Сахаров О.А. Пробле-
ма обеспечения сейсмостойкости железнодорожного
транспорта // Сейсмостойкое строительство. Безопас-
ность сооружений. 2005. № 4. С. 43–47.
46. Uzdin A.M., Kuznecova I.O., Saharov O.A. An Earthquakeresistance
ensuring problem of railway transport.
Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy.
2005. No. 4, pp. 43–47. (In Russian).
47. Сахаров О.А. Обоснование уровня расчетного сейсми-
ческого воздействия при оценке сейсмостойкости зда-
ний и сооружений, эксплуатируемых в особых условиях.
Дисс… канд. техн. наук. СПб. 2011. 208 с.
47. Saharov O.A. Validation of design seismic action level
at earthquake-resistance estimation of buildings and
structures operated under specific conditions. Cand. Diss.
(Engineering). Saint Petersburg. 2011. 208 p. (In Russian).
48. Назаров Ю.П., Ойзерман В.И. Метод трех моделей в рас-
четах сооружений на сейсмические воздействия // Стро-
ительная механика и расчет сооружений. 2007. № 6.
С. 6–8.
48. Nazarov Yu.P., Oyzerman V.I. The three-models method for
computations of structures on seismic actions. Stroitel’naya
mekhanika i raschyot sooruzhenij. 2007. No. 6, pp. 6–8.
(In Russian).
49. Назаров Ю.П. Проблемы актуализации СНиП II-7–81* //
Строительный эксперт. 2010. № 11–12 (307). С. 11–13.
49. Nazarov Yu.P. Updating problems of the seismic building
design code SNiP II-7–81*. Stroitel’niy ehkspert. 2010.
No. 11–12 (307), pp. 11–13. (In Russian).
50. Курзанов А.М. Предложения по нормативному расчету
сооружений на волновую сейсмическую нагрузку // Про-
мышленное и гражданское строительство. 2010. № 9.
С. 54–55.
50. Kurzanov A.M. Suggestions to a standard computation
of structures on a wave seismic load. Promyshlennoe
i grazhdanskoe stroitel’stvo. 2010. No. 9, pp. 54–55.
(In Russian).
51. Айзенберг Я.М. «Актуализированная редакция и про-
блемы дальнейшего развития СНиП II-7–81* «Стро-
ительство в сейсмических районах» // Надежность и
безопасность зданий и сооружений при сейсмических
и аварийных воздействиях. Сборник трудов IV науч-
но-практического семинара. 2 ноября 2011 г. Москва:
МГСУ. С. 36–39.
51. Ajzenberg Ya.M. An updated version and problems of further
development of the seismic building design code SNiP II-7–81*.
Reliability and safety of buildings and structures under
seismic and emergency influences. Proceedings of the
IV scientific-practical seminar. November 2, 2011. Moscow:
MUCE, pp. 36–39. (In Russian).
52. Мкртычев О.В., Джинчвелашвили Г.А., Дзержинский Р.И.
Философия многоуровневого проектирования в свете
обеспечения сейсмостойкости сооружений // Геология и
геофизика Юга России. 2016. № 1. С. 71–78.
52. Mkrtychev O.V., Dzhinchvelashvili G.A., Dzerzhinskii R.I.
Philosophy of multilevel design in the light of ensuring
seismic stability of structures. Geologiya i geofizika Yuga
Rossii. 2016. No. 1, pp. 71–78. (In Russian).
53. Джинчвелашвили Г.А., Мкртычев О.В., Соснин А.В.
Анализ основных положений СП 14.13330.2011
«СНиП II-7-81*. Строительство в сейсмических районах»
// Промышленное и гражданское строительство. 2011.
№ 9. С. 17–21.
53. Dzhinchvelashvili G.A., Mkrtychev O.V., Sosnin A.V. A main
provisions analysis of the seismic building design code
SP 14.13330.2011 «SNiP II-7-81* Construction in seismic
areas». Promyshlennoe i grazhdanskoe stroitel’stvo. 2011.
No. 9, pp. 17–21. (In Russian).
54. Джинчвелашвили Г.А., Мкртычев О.В., Соснин А.В.
Анализ основных положений СП 14.13330.2011
«СНиП II-7–81*. Строительство в сейсмических райо-
нах» // О возможных принципиальных ошибках в нормах
проектирования, приводящих к дефициту сейсмостойко-
сти сооружений в 1–2 балла. Сборник трудов семинара.
15 сентября 2011 г. М.: МГСУ. С. 19–27.
54. Dzhinchvelashvili G.A., Mkrtychev O.V., Sosnin A.V. A
main provisions analysis of the seismic building design
code SP 14.13330.2011 «SNiP II-7–81* Construction in
seismic areas». On possible fundamental mistakes in
design standards leading to a seismic resistance deficit
of structures in 1–2 points. Collection of proceedings
of the seminar. September 15, 2011. Moscow: MUCE,
pp. 19–27.
55. Курзанов А.М. Еще раз об актуализированной редакции
СНиП II-7–81* «Строительство в сейсмических районах»
// Промышленное и гражданское строительство. 2011.
№ 8. С. 45–48.
55. Kurzanov A.M. Once again about an updated version of
seismic building design code SNiP II-7–81* «Construction in
seismic areas». Promyshlennoe i grazhdanskoe stroitel’stvo.
2011. No. 8, pp. 45–48. (In Russian).
56. Аминтаев Г.Ш. Опыт применения СП 14.13330.2014.
Строительство в сейсмических районах // Материалы
5 общего заседания Научного совета Российской акаде-
мии архитектуры и строительных наук по Сейсмологии
и сейсмостойкому строительству (№ 62-С-05.2015 от
11.05.2015). Тезисы докладов. М.: РААСН. 4 с.
56. Amintaev G.Sh. An experience case based on seismic
building design code SP 14.13330.2014 “Construction
in seismic areas”. Materials of the 5-th meeting of the
Scientific Council of the Russian Academy of Architecture
and Construction Sciences on Seismology and Earthquake
Engineering (No. 62-S-05.2015 of 11/05/2015). Theses of
reports. Мoscow: RAACS. 4 p.
57. Денисенкова Н.Н., Джинчвелашвили Г.А. Политика в
сфере образования и науки как инструмент модерниза-
ции общества (на примере инженерной сейсмологии и
сейсмостойкого строительства) // Геология и геофизика
Юга России. 2016. № 3. С. 38–47.
57. Denisenkova N.N., Dzhinchvelashvili G.A. Policy in the field
of education and science as an instrument for modernizing
society (using the example of engineering seismology and
earthquake-proof construction). Geologiya i geofizika Yuga
Rossii. 2016. No. 3, pp. 38–47. (In Russian).
58. Zhang Zh., Cho Ch. Experimental study on damping ratios
of in-situ buildings. World Academy of Science, Engineering
and Technology. 2009. 5 p.
Index of Articles Published in the Journal «Housing Construction» in 2017 . . . . . . . . . . . . . . . . . 50