Sitemap

Zhilishchnoe Stroitel'stvo №12

Table of contents

L.V. KIEVSKY, Doctor of Sciences (Engineering), Chief Research Scientist (mail@dev-city.ru), A.A. SERGEYEVA, Chief Specialist (mail@dev-city.ru) OOO NPTS «City Development» (structure 3, 19, Mira Avenue, 129090, Moscow, Russian Federation)

Renovation Planning and Solvent Demand An assessment of the condition of the Moscow residential real estate market is made. It is shown that implementation of the renovation program, in addition to the relocation of residents, provides the output of additional housing at the real estate market. The necessity of complex consideration of segments of the primary and secondary housing, markets of Moscow and Moscow Oblast is substantiated. As a potential for the growth of solvent demand two components are considered. The first one is a return to the level of solvent demand from the present 7.5% (the proportion of demand in 2016 for the primary residential real estate within the old boundaries of Moscow) up to 11.3% (the level of 2014). This growth of solvent demand at the primary market of housing in the renovation districts (that includes the delayed demand in these districts and additional purchase of housing by resettlers) is possible due to the redistribution of demand among segments at the housing market of the Moscow Region. The second component is increasing the share of mortgage transactions ( market drivers) from the present 75% up to the maximum possible level of 95%. The potential increase can be primarily concentrated in the areas of renovation. It is also proved that the housing commissioning in the renovation districts will be limited by solvent demand of the population that is necessary to take into account when planning.

Keywords: renovation of quarters, solvent demand, residential real estate market, urban planning policy.

For citation: Kievsky L.V., Sergeeva A.A.. Renovation planning and solvent demand. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 3–7. (In Russian).

References
1. Kievskiy L.V., Horkina G.А. Realization of priorities of urban policy for the balanced development of Moscow. Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 8, pp. 54–57. (In Russian).
2. Levkin S.I., Kievskiy L.V. Town planning aspects of the sectoral government programs. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 6, pp. 26–33. (In Russian).
3. Kievskiy I.L., Kievskiy L.V. Strategy of urban development of Moscow. Integration, partnership and innovation in building science and education. Collection of materials of the international scientific conference. «National Research Moscow State University of Civil Engineering». 2017, pp. 72–75. (In Russian).
4. Kievskiy I.L., Grishutin I.B., Kievskiy L.V. Distributed reorganization of blocks (pre-project stage). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 23–28. (In Russian).
5. Kievskiy L.V. Applied organization of construction. Vestnik MGSU. 2017. No. 3, pp. 253–259. (In Russian).
6. Kievskiy L.V. Kompleksnost’ i potok (organizatsiya zastroiki mikroraiona) [The complexity and the flow (organization development of the neighborhood)]. Moscow: Stroyizdat. 1987. 136 p.
7. Kievskiy L.V. Planirovanie i organizatsiya stroitel’stva inzhenernykh kommunikatsiy [Planning and organization of engineering communications construction]. Moscow: SvRARGUS. 2008. 464 p.
8. Kievskiy L.V., Kievskaya R.L. Impact of urban solutions on real estate markets. Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 6, pp. 27–31. (In Russian).
9. Kosareva N.B., Polidi T.D., Puzanov A.S. Zhilishchnaya politika i ekonomika v Rossii: rezul’taty i strategiya razvitiya. [Housing policy and economy in Russia: Results and development strategy]. Moscow: Higher School of Economics NRU. 2015. 387 p.
10. Kievskiy L.V. Ot organizatsii stroitel’stva k organizatsii investitsionnykh protsessov v stroitel’stve. «Razvitie goroda»: Sbornik nauchnykh trudov 2006–2014 gg. [From construction management to investment process in construction management. «City Development» collection of proceedings 2006–2014]. Moscow: SvR-ARGUS. 2014. 592 p.
11. Kievskiy L.V., Kievskaya R.L., Mareev Yu.A. The main methodical directions of the formation of urban planning rating. Zhilishhnoe stroitel’stvo [Housing Construction]. 2015. No. 12, pp. 3–8. (In Russian).
12. Kievskiy L.V., Kievskiy I.L. Information and mapping technologies as a tool for analysis of city development programs. International Journal of Applied Engineering Research. 2015. Vol. 10. No. 20, pp. 40893–40898.
13. Semechkin A.E. Sistemnyi analiz i sistemotekhnika [System analysis and system engineering]. Moscow: SvR-ARGUS. 2005. 536 p.
14. Gusakova E.A., Pavlov A.S. Osnovy organizatsii i upravleniya v stroitel’stve [Bases of the organization and management in construction]. Moscow: Yurait. 2016. 318 p.
15. Oleinik P.P. Organizatsiya stroitel’nogo proizvodstva [Organization of construction production]. Moscow: ASV. 2010. 576 p.
16. Shoshinov V.V., Sinenko S.A., Sapozhnikov V.N. Organizatsiya, normirovanie i oplata truda na predpriyatiyakh otrasli [The organization, regulation and compensation at the entities of an industry]. Moscow: Slovo-Sims. 2001. 112 p.
V.I. RIMSHIN, Doctor of Sciences (Engineering) (niisf@niisf.ru), E.V. KIMJAEVA, Engineer Moscow state university of civil engineering (National Research University) (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

Complex Renovation of «Yuzhny» Micro-district of Lobnya Urban District of Moscow Oblast The analysis and evaluation of measures aimed at the complex renovation of the “Yuzhny” micro-district of Lobnya urban district of Moscow oblast have been made. Depending on the level of physical deterioration and obsolescence and residual value of the development, the measures to renovate and modernize the housing stock (overhaul, reconstruction, demolition) have been developed. For the rational organization of the system of public services in the territories of the existing development (ordering of placement of objects and expanding of their nomenclature), the linear-nodal scheme is proposed. Main measures for improving the transport and engineering infrastructures are presented. For preserving the basic housing stock presented by five-storey brick houses of 1-447 series, the volumetric-planning method for reconstruction with a symmetrical broadening of the house by 3 m and a superstructure up to nine stories, which makes it possible to eliminate structural-technical and volumetric-planning shortcomings of buildings of this series, is proposed.

Keywords: renovation, reconstruction, overhaul, demolition, new construction, micro-district.

For citation: Rimshin V.I., Kimjaeva E.V. Complex renovation of «Yuzhny» micro-district of Lobnya urban district of Moscow oblast. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 8–13. (In Russian).

References
1. Grjaznov M.V., Popova M.V., Vlasov A.V., Rimshin V.I., Markov S.V., Sinjutin A.V. The main problems of operation of large-panel buildings and ways of their decision. Estestvennye i tehnicheskie nauki. 2014. No. 9–10 (77), pp. 355–357. (In Russian).
2. Kasimov V.R., Sivokon’ Ju.V., Rimshin V.I., Semenova S.A., Ivanov V.V. Determination of the optimal geometric parameters of Arena-Dnepr stadium. Estestvennye i tehnicheskie nauki. 2014. No. 9–10 (77), pp. 361–364. (In Russian).
3. Kas’janov V.F., Tabakov N.A. Experience of foreign countries in the field of reconstruction of urban areas. Vestnik MGSU. 2011. No. 8, pp. 21–27. (In Russian).
4. Kustikova Ju.O., Rimshin V.I., Shubin L.I. Practical recommendations and the feasibility study for the use of composite fittings in reinforced concrete structures of buildings and constructions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 7, pp. 14–18. (In Russian).
5. Matveeva E.A., Litvinova Ju.V., Rimshin V.I., Markov S.V., Morozova O.V., Golubka A.I. About development of the alternate sources of energy supply for urban areas. Estestvennye i tehnicheskie nauki. 2014. No. 9–10 (77), pp. 325–327. (In Russian).
6. Rimshin V.I., Ivanov V.V. Introduction of energy efficient technologies in the design and reconstruction of urban areas. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. 2014. No. 8 (91), pp. 104–109. (In Russian).
7. Rimshin V.I., Filimonova I.I. Renovation of the housing estate and analysis of the ecological situation of Presnensky district Moscow. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. 2014. No. 9 (92), pp. 126–131. (In Russian).
8. Sheina S.G., Martynova E.V., Girja M.A. Methodical bases of energy efficient reconstruction of housing estates. Akademicheskij vestnik UralNIIproekt RAASN. 2014. No. 4, pp. 14–20. (In Russian).
9. Antoshkin V.D., Erofeev V.T., Travush V.I., Rimshin V.I., Kurbatov V.L. The problem optimization triangular geometric line field. Modern Applied Science. 2015. Т. 9. No. 3, pp. 46–50.
10. Bazhenov Y.M., Erofeev V.T., Rimshin V.I., Markov S.V., Kurbatov V.L. Changes in the topology of a concrete porous space in interactions with the external medium. Engineering Solid Mechanics. 2016. T. 4. No. 4, pp. 219–225.
11. Erofeev V., Karpushin S., Rodin A., Tretiakov I., Kalashnikov V., Moroz M., Smirnov V., Smirnova O., Rimshin V., Matvievskiy A. Physical and mechanical properties of the cement stone based on biocidal Portland cement with active mineral additive. Materials Science Forum. 2016. Т. 871, pp. 28–32.
12. Erofeev V.T., Bogatov A.D., Bogatova S.N., Smirnov V.F., Rimshin V.I., Kurbatov V.L. Bioresistant building composites on the basis of glass wastes. Biosciences Biotechnology Research Asia. 2015. Т. 12. No. 1, pp. 661–669.
13. Krishan A., Rimshin V., Markov S., Erofeev V., Kurbatov V., The energy integrity resistance to the destruction of the longterm strength concrete. Procedia Engineering. 2015. T. 117, pp. 211–217.
L.A. SAKMAROVA, Candidate of Sciences (Pedagogy) I.N. Ulianov Chuvash State University (15, Moscovsky Avenue, Cheboksary, 428015, Chuvash Republic, Russian Federation)

Retrospective Analysis of Comfort Level Development of Housing Stock in the City of Cheboksary The article contains a retrospective analysis of the architecture of residential buildings of various construction periods by means of comparing types of houses, the ratio of apartments by number of rooms, occupation density of apartments in correlation with the demographic structure of the city of Cheboksary with due regard for changes in normative parameters of the level of housing provision for the population. The periodization of the development of housing stock of Cheboksary, reflecting the stages of construction of residential buildings in 10-year intervals, is proposed. It is shown that in 1925–1970 mainly brick houses of up to 5 stories were constructed. In 1970–1980 – large panel hoses of up to 12 stories. Since 1980, monolithic, precast-monolithic and large panel houses of over 16 stories began to construct. In the beginning of the XXI century a need for townhouses and cottages emerged.

Keywords: affordable housing, comfort level of housing stock, large panel apartment houses, typical projects, objects of mass construction, types of flats, architectural-planning typology, problems of city development, calculation of housing stock structure, numerical structure of family, periodization of housing stock development.

For citation: Sakmarova L.A. Retrospective analysis of comfort level development of housing stock in the city of Cheboksary. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 14–19. (In Russian).

References
1. Sakmarova L.A. Evaluation of the state of comfort of housing housing. Materials of the VIII International Scientific and Practical Conference «Days of Science 2012» (Prague, March 27-April 05, 2012). Construction and architecture. Praga: Izdatel’skii dom «Obrazovanie i nauka». 2012, pp. 26–30.
2. Sakmarova L.A. Historical analysis of the development of the level of comfort of a housing stock of mass development on the example of Cheboksary Materials of the 7th All-Russian (1st International) Conference «New in Architecture, Design of Building Structures and Reconstruction» (NASKR-2012). Cheboksary: Chuvash State University, 2012, pp. 26–31. (In Russian).
3. Dyubek LK, Dikhter Ya.E. Novoe v zhilishchnom stroitel’stve Moskvy [New in housing construction in Moscow]. Moscow: Stroyizdat. 1974. 60 p.
4. Lvov I.V. Innovative modernization of the structure of housing construction in the Chuvash republic under conditions of new economy. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 10, pp. 41–45. (In Russian).
5. Buzyrev V.V., Selyutina L. G. Gilishnaya problema I puti resheniya [The housing problem and its solutions in modern conditions]. Saint Petersburg: SPbGEU. 2013. 335 p.
6. Radionov D.G., Afanasyev A.Y., Gorovoj A.A. Regional cluster policy in the context of the management of the development of the regional economy. Mir Economiki Prava. 2014. No. 4–5, pp. 19–30. (In Russian).
7. Granik Yu.G. Zavodskoe proizvodstvo jelementov polnosbornyh domov [Factory production of elements of prefabrication houses]. Moscow: Stroyizdat. 1984. 222 p.
8. Antipov D.N. Strategy of development of the enterprises of industrial housing construction. Problemy Sovremennoi Ekonomiki. 2012. No. 1, pp. 267–270. (In Russian).
9. Travush V.I., Volkov Yu.S. Common problems of construction science and production, unification and standardization in construction. Vestnik MGSU. 2014. No. 3, pp. 7–14. (In Russian).
10. Yudin I.V., Petrova I.V., Bogdanov V.F. Improvement of constructive solutions, technology and organization of construction of large-panel and panel-frame houses of Volga DSK. Stroitel’nye Materialy [Construction materials]. 2017. No. 3, pp. 4–8. (In Russian).
11. Granev V.V., Kodysh E.N. Development and updating of normative documents on design and construction of industrial and civil buildings. Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2013. No. 3, pp. 9–12. (In Russian).
12. Nikolaev S.V. The revival of large-panel housing construction in Russia. Zhilishhnoe Stroitel’stvo [Housing Construction]. 2012. No. 4, pp. 2–8. (In Russian).
13. Nikolaev S.V. Panel and Frame Buildings of New Generation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 8, pp. 2–9. (In Russian).
14. Sokolov N.S. Technological methods of the device purovektsionnyh piles with multiplies broadening. Zhilishhnoe Stroitel’stvo [Housing Construction]. 2016. No. 10, pp. 54–59. (In Russian).
15. Sokolov N.S. Criteria of economic efficiency of drilling piles use. Zhilishhnoe Stroitel’stvo [Housing Construction]. 2017. No. 5, pp. 34–38. (In Russian).
16. Sokolov N.S. The use of drilling-injection piles-ERT as the foundations of the foundations of high bearing capacity. Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2017. No. 8, pp. 74–79. (In Russian).
S.V. FEDOSOV1, Doctor of Sciences (Engineering), Academician of RAACS, President (prezident@ivgpu.com); V.G. KOTLOV2, Candidate of Sciences (Engineering), Counsellor of RAACS (KotlovVG@volgatech.net), M.A. IVANOVA 2, Engineer (mashasmils@yandex.ru) 1 Ivanovo State Polytechnical University (20, Mart 8-th Street, Ivanovo, 153037, Russian Federation) 2 Volga State University of Technology (3, Lenin Square, Yoshkar-Ola, Republic of Mari El, 424000, Russian Federation) The Reasons of Performance Impairment of Wooden Structures During Operation in an Environment with Cyclically Changing Temperature and Humidity Conditions The article presents an overview of the main characteristics of wooden structures of buildings and facilities formed during their operation in an environment with cyclically changing values of temperature and humidity. These characteristics have a significant effect on the operation of structures after their intended use. In this context the aim of this article is to determine the main reasons of decrease of wooden structures operation capacity during exploitation. To achieve the aim the influence of constructive system, type of connections, quality of performance, quality of materials, and magnitude of load on the stage of wooden structures and its work in the process of exploitation is studied. It is revealed that in addition to these factors, parameters of the environment surrounding the structures, temperature and relative air humidity namely, are important. Criteria for selecting the type of the structure depending on operational conditions have been determined. It is established that one of the reasons for decay of wooden elements is condensation processes, more complicated than the processes of drop-liquid humidification. Differences between differential condensation, systematic condensation and cyclic process of condensation have been revealed. The effect of the temperature hysteresis on the process of moisture penetration in the wood has been determined. The aim of the further studies is to determine the effect of temperaturehumidity parameters of the external environment on the strength of wooden structures in various buildings with due regard for improving their durability.

Keywords: wooden structures, operation of structure, operational characteristics, condensation processes, temperature hysteresis.

For citation: Fedosov S.V., Kotlov V.G., Ivanova M.A. Principles of formation of main operational characteristics of wooden structures under cyclic changing parameters of external environment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 20–25. (In Russian).

References
1. Zhadanov V.I., Ukrainchenko D.A., Inzhutov I.S., Afanas’ev V.E. Algorithms of shaping and designing of the combined block constructions on the basis of wood. Vestnik Povolzhskogo gosudarstvennogo technologicheskogo universiteta. Materialy. Konstrukcii. Tehnologii. 2017. No. 2, pp. 53–64. (In Russian).
2. Turkovsky S.B., Pogoreltsev A.A. Development of wooden structures of TSNIISK system based on inclined stuck-in rods. Promyshlennoe i grazhdanskoe stroitel’stvo. 2007. No. 3, pp. 6–8. (In Russian).
3. Rimshin V.I., Labudin B.V., Melehov V.I., Popov E.V., Roshhina S.I. Dowel and washer connections for elements of wooden structures. Vestnik MGSU. 2016. No. 9, pp. 35–50. (In Russian).
4. Vodjannikov M.A., Vorob’ev A.V. Analysis of wood structure connections using cylindrical steel and carbon fiber dowel pins. Vestnik Permskogo nacional’nogo issledovatel’skogo politehnicheskogo universiteta. Prikladnaja jekologija. Urbanistika. 2017. No. 1, pp. 159–169. (In Russian).
5. Kirjutina S.E. Maintenance quality level of wooden houses. Walls’ subsidence issues. Vestnik grazhdanskih inzhenerov. 2016. No. 2, pp. 33–37. (In Russian).
6. Smirnova E.V. Modern devices for diagnostics and quality control of wooden structures. Intellectual property and modern technology and technologies for economic development: materials of the third Republican youth scientific and practical conference in the framework of the All-Russian student forum «Engineering cadres – the future of the innovative economy of Russia». Yoshkar-Ola. 2015, pp. 114–117. (In Russian).
7. Kirjutina S.E. Relevance of developing the quality control system of wooden designs of buildings under construction. Vestnik grazhdanskih inzhenerov. 2015. No. 2, pp. 48–52. (In Russian).
8. Malyhina V.S., Denisov A.N. Modern wooden construction. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2017. No. 5, pp. 30–36. (In Russian).
9. Shhegoleva Je.V. Ecological building with use of wood as the main construction material. Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. Serija: Innovacii v stroitel’stve. 2017. No. 3, pp. 142–149. (In Russian).
10. Smorchkov A.A., Kereb S.A., Dubrakov S.V. Accounting of long-term loading when calculating wooden structures. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 3, pp. 64–66. (In Russian).
11. Kabanov V.A., Masalov A.V. Fracture toughness of glulam elements under sustained loading. Izvestija Jugo-Zapadnogo gosudarstvennogo universiteta. 2016. No. 4, pp. 96–102. (In Russian).
12. Lin’kov N.V. Stress-strain state of cross section wooden beams on composite connections at long-term load. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 7, pp. 44–48. (In Russian).
13. Jarcev V.P., Buchneva E.M., Dolzhenkova M.V., Bljum A.V. Influence of impregnation on operational characteristics of timber products and structures. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta. 2016. Vol. 22. No. 1, pp. 150–157. (In Russian).
14. Fedosov S.V. Teplomassoperenos v tehnologicheskih processah stroitel’noy industrii: monografiya. [Heat and mass transfer in technological processes of the construction industry: monograph] Ivanovo: IPK «PresSto». 2010. 364 p.
15. Alojan R.M., Fedosov S.V., Mizonov V.E. Teoreticheskie osnovy matematicheskogo modelirovanija mehanicheskih i teplovyh processov v proizvodstve stroitel’nyh materialov: monografiya [Theoretical foundations of mathematical modeling of mechanical and thermal processes in the production of building materials: monograph]. Ivanovo: IGASU. 2011. 256 p.
16. Kljueva N.V., Dmitrieva K.O. Issues of sustainable rod elements design systems of different wood species in force and environmental loading moisture. Stroitel’stvo i rekonstrukcija. 2016. No. 5, pp. 60–68. (In Russian).
17. Lin’kov V.I. Deformability of wooden elements connections on the inclined screwed rods. Nauchno-tehnicheskij vestnik Povolzh’ja. 2013. No. 5, pp. 247–250. (In Russian).
18. Orlovich R.B., Gil’ Z., Dmitriev P.A. Tendencies in the development of wood structures joints abroad. Izvestija vysshih uchebnyh zavedenij. Stroitel’stvo. 2004. No 11, pp. 4–9. (In Russian).
19. Fedosov S.V., Kotlov V.G., Ivanova M.A. Influence of operation conditions on the state of wood of truss structures. The second international scientific and technical conference, dedicated to the 45th anniversary of the architecture and construction faculty of the OSU «Innovative construction technologies. Theory and practice»: materials of conference. Orenburg. 2015, pp. 371–374. (In Russian).
20. Sheshukova N.V., Mihajlov B.K. Development of methods for forecasting wood deformability taking into account humidity. Izvestija vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2007. No. 1, pp. 88–93. (In Russian).
21. Stroganov V.F., Boichuk V.A., Sagadeev E.V. Biodeterioration of wooden materials and structures. Izvestija Kazanckogo gosudarstvennogo architekturno-stroitel’nogo universiteta. 2014. No. 2, pp. 185–193. (In Russian).
22. Kotlov V.G., Fedosov S.V., Kuznecov I.L. Influence of the operation regime on the work of wooden structures with connections on metal dowels. Program. Abstracts of the 66th All-Russian scientific conference. Kazan. 2014, p. 51. (In Russian).
23. Fedosov S.V., Kotlov V.G., Aloyan R.M., Yasinski F.N., Bochkov M.V. Simulation of heat-and-mass transfer in gas-solid system at nailed connection of timber structures elements. Part 1. General physical-mathematical statement of problem. Stroitel’nye Materialy [Construction materials]. 2014. No. 7, pp. 86–91. (In Russian).
V.V. BABANOV1,2, Candidate of Sciences (Engineering) (babanov_vladimir@mail.ru), N.A. EVSEEV1,2, Engineer
1 Saint-Petersburg State University of Architecture and Civil Engineering (4, 2-ya Krasnoarmeiskaya Street, 190005, Saint-Petersburg, Russian Federation)
2 OOO «PI Georeconstruction» (4, Off.414, Izmaylovsky Avenue, 190005, Saint-Petersburg, Russian Federation) Sizing of Stiffness Parameters of Reinforced Concrete Structures in Finite-Element Dynamic Calculation of Facilities The article presents results of the numerical analysis of the design scheme of a large-span reinforced concrete structure. The aim of calculation was to determine the frequency of the first tone of own vibrations of the facility which seemed the most dangerous among the causes of occurrence of resonance phenomena. Presented results of the checking dynamic calculation of the large-span structure were compared with the data of in-place tests of the structure that made it possible to establish the correctness of sized stiffness parameters of the calculation scheme. On the basis of the work conducted, it is established that for evaluating the frequency of own vibrations of the structure for matching the results of observations, the stiffness of finite elements in the numerical calculation should take into account the dynamic modulus of concrete elasticity. The checking of applicability of various formulas of approximation of the «initial – dynamic modulus of elasticity» dependence for assigning a value of the dynamic modulus of concrete elasticity in numerical calculations is also made.

Keywords: stiffness of reinforced concrete structures, numerical analysis of structural schemes, verification of numerical calculations.

For citation: Babanov V.V., Evseev N.A. Sizing of stiffness parameters of reinforced concrete structures in finite-element dynamic calculation of facilities. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 26–29. (In Russian).

Список литературы / References
1. Neville A. M. Properties of Concrete. New York: John Wiley and Sons, 2000. 620 р.
2. Kumar M. Concrete Structure Properties and Materials. New Jersey: Englewood Cliffs, 1986. 450 р.
3. Popovics J.S. Verification of relationships between mechanical properties of concrete like materials. Materials and Structures. 1975. Vol. 8. No. 45, pp. 183–191.
4. Shkolnik I.E. Evaluation of dynamic strength of concrete from results of static tests. Journal of Engineering Mechanics. 1996. Vol. 122 (12), pp. 135–138.
5. Lydon F.D., Balendran R.V. Some Observations on Elastic Proper-ties of Plain Concrete. Cement and Concrete Research. 1986. Vol. 16. No. 3, pp. 312–324.
6. Несветаев Г.В., Халезин С.В. Деформационные свой ства бетонов с каркасной структурой // Науковедение. 2015. № 4. C. 11–13.
6. Nesvetaev G.V., Khalezin S.V. The deformation properties of concrete with contact structure of coarse aggregate. Naukovedenie. 2015. No. 4, pp. 11–13. (In Russian).
7. Popovics J.S. A Study of Static and Dynamic Modulus of Elasticity of Concrete. ACI-CRC Final Report. 2008.
8. Salman Mohammed M., The Ratio between Static and Dynamic Modulus of Elasticity in Normal and High Strength Concrete. Journal of Engineering and Development. 2006. Vol. 10. No. 2. pp.163–174.
9. Евсеев Н.А. Учет физической нелинейности железобе тонных конструкций при численных расчетах конструк тивных систем // Вестник гражданских инженеров. 2017. № 5. С. 66–70.
9. Evseev N.A. Accounting of physical nonlinearity of reinforced concrete structures at computation of structural systems. Vestnik grazhdanskikh inzhenerov. 2017. No. 5, pp. 66–70. (In Russian).
L.M. DOBSHITS, Doctor of Sciences (Engineering) (levdobshits@yandex.ru) Russian University of Transport (9, bldg. 9, Obraztsova Street, 127994, Moscow, Russian Federation)

Physical-Mathematical Model of Concretes Destruction at Alternate Freezing and Thawing The physical-mathematical model of the concrete behavior under cyclic freezing and thawing in the water-saturated state is proposed. Dependences of changing the humidity, temperature, and pressure in concrete at its alternate freezing and thawing have been obtained. Main factors determining the frost resistance of cement concretes have been revealed. Methods of control over these factors are shown. It is established that the number of cycles when the concrete destruction occurs according to the developed physical-mathematical model practically coincides with the number of cycles of alternate freezing determined experimentally that makes it possible to predict the frost resistance of concrete without conducting the cycles of alternate freezing and thawing and refuse from long-lasting and expensive tests. The processes occurring when testing concrete samples don’t fully correspond to those which occur when freezing concrete structures if the thickness of the structure is over 30–40 cm. It is shown that it is possible to appoint differentially the design grades on frost resistance for various places of the same structure that makes it possible to reduce expenditures for construction of many objects.

Keywords: prediction, durability, concrete mix, mathematical model, porosity, frost resistance, water impermeability, concrete, reinforced concrete.

For citation: Dobshits L.M. Physical-mathematical model of concretes destruction at alternate freezing and thawing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 30–36. (In Russian).

References
1. Dobshits L.M. Ways to improve the durability of concretes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 4–9. (In Russian).
2. Sheykin A.E., Dobshits L.M. Tsementnye betony vysokoi morozostoikosti [Cement concrete of high frost resistance]. Moscow: Stroyizdat. 1989. 128 p.
3. Sheykin A.E. Stroitel’nye materialy [Construction materials]. Moscow: Stroyizdat. 1988. 432 p.
4. Kuntsevich O.V. Betony vysokoi morozostoikosti dlya sooruzhenii Krainego Severa [Concrete of high frost resistance for constructions of Far North]. Leningrad: Stroyizdat. 1983. 132 p.
5. Sheykin A.E., Dobshits L.M. About communication of criterion of frost resistance with real frost resistance of concrete. Beton i Zhelezobeton. 1981. No. 1, pp. 19–20. (In Russian).
6. Sheykin A.E., Dobshits L.M., Baranov A.T. Criteria of frost resistance of cellular concrete of autoclave curing. Beton i Zhelezobeton. 1986. No. 5, pp. 31–32. (In Russian).
7. Dobshits L.M. Bases of increase in durability of concrete for transport constructions. Ensuring quality of reinforced concrete of transport constructions. Scientific works of JSC TSNIIS. Moscow: JSC TSNIIS, 2006. Issue 236, pp. 51–62. (In Russian).
8. Davidson M.G. Vodonepronitsaemyi beton [Waterproof concrete]. Leningrad: Lenizdat. 1965. 98 p.
9. Kolokolnikova E.I. Dolgovechnost’ stroitel’nykh materialov (beton i zhelezobeton) [Durability of construction materials (concrete and reinforced concrete)]. Moscow: Vysshaya shkola. 1975. 159 p.
10. Gorchakov G.I. Povyshenie morozostoikosti i prochnosti betona [Increase in frost resistance and durability of concrete]. Moscow: Promstroyizdat. 1956. 107 p.
11. Shestoperov S.V. Dolgovechnost’ betonov [Durability of concrete]. Moscow: Avtotransizdat. 1976. 267 p.
12. Dobshits L.M. Portnov I.G. Physical and mathematical modeling of destruction of concrete at his cyclic freezing thawing. Durability and protection of designs against corrosion. Materials of the international conference. Moscow. 1999, pp. 113–118. (In Russian).
13. Dobshits L.M. Ways of receiving frost-resistant concrete of transport constructions. Zheleznodorozhnyi transport. Stroitel’stvo. Proektirovanie. 2000. No. 1, pp. 1–38. (In Russian).
14. Dobshits L.M. Bases of receiving durable concrete. Collection of works of the All-Russian scientific and practical conference. Construction materials science. Theory and practice. Moscow: SIP RIA. 2006, pp. 39–45.
A.V. SOSNIN, Engineer (seism.estim.lab@mail.ru) Scientific and research laboratory of design outcomes safety estimation and earthquake resistance of building structures (13a, Lenina Street, Smolensk, 214000, Russian Federation)

Infobase and Formula of a Two-Step-State Computation Technique of RC Earthquake-Resistance Frame Systems using the Pushover Analysis Conception To memory of my research supervisor Victor G. Bednyakov A formulation of an applied earthquake-resistance estimation technique for RC frame building is presented by the author. A feature of the technique is a patterning of an analysis algorithm for research objects by dividing it into consecutive steps (stages). The subject field novelty consists in forming computation stages not only taking into account a strength of earthquake action but also for separating of a calculation procedure of RC members reinforcement parameters under seismic loads. The considered approach takes into account that in correctly calculated and designed RC members at a strong (rare) earthquake only hinge zones are damaged as rule. It is suggested that parameters of longitudinal reinforcement of RC members to determine under operating loads and weak (frequent) earthquakes combinations using the Response Spectrum Technique in Seismic Building Design Code SNiP II-7–81* (2000 ed.) formulation (with Seismic-Force-Reduction Factor K1 equal to unity). And under strong a (rare) earthquake the author offers to estimate an authenticity of hinges zones computational parameters and their web reinforcement congestion using a convenient nonlinear static (Pushover) analysis procedure (NSP). The technique formulation is preceded by a review of general features of NSPs which constitute the foundation of Pushover-based methodology, and the ontology of Russian two-step-state design experience of earthquake resistance structures.

Keywords: MCE-earthquake specified event (in SP 14.13330 formulation); frame buildings and structures; earthquake-resistance estimation technique; twostep- state computation concept; Pushover curve; Pushover analysis.

For citation: Sosnin A.V. Infobase and formula of a two-step-state computation technique of RC earthquake-resistance frame systems using the pushover analysis conception . Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 37–49. (In Russian).

Список литературы / References
1. Соснин А.В. Об уточнении коэффициента допускаемых повреждений K1 и его согласованности с концепцией ре- дукции сейсмических сил в постановке спектрального метода (в порядке обсуждения) // Вестник гражданских инженеров. 2017. № 1(60). С. 92–116.
1. Sosnin A.V. About refinement of the seismic-force-reduction factor (K1) and its coherence with the concept of seismic response modification in formulation of the spectrum method (in order of discussion). Vestnik grazhdanskikh inzhenerov. 2017. No. 1(60), pp. 92–116. (In Russian).
2. Соснин А.В. Об особенностях методологии нелинейного статического анализа и его согласованности с базовой нормативной методикой расчета зданий и сооружений на действие сейсмических сил // Вестник ЮУрГУ. Се- рия «Строительство и архитектура». 2016. Т. 16. № 1. С. 12–19. DOI:10.14529/build160102.
2. Sosnin A.V. On peculiarities of the nonlinear static analysis and its coordination with the standard calculation procedure of buildings and structures under seismic loads. Vestnik YUUrGU. Seriya «Stroitel’stvo i arhitektura». 2016. Vol. 16. No. 1, pp. 12–19. DOI:10.14529/build160102. (In Russian).
3 Соснин А.В. О параметрах диафрагм жесткости железо- бетонных каркасных зданий для строительства в сейс- мических районах (по результатам расчетов многоэтаж- ного жилого здания методом нелинейного статического анализа в SAP2000) // Жилищное строительство. 2016. № 4. С. 17–25.
3. Sosnin A.V. About shear walls parameters of reinforced concrete frame buildings for erecting in seismic areas (on calculation of results of a multi-storey residential building by pushover analysis using software SAP2000). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 4, pp. 17–25. (In Russian).
4. Джинчвелашвили Г.А., Соснин А.В. Анализ некоторых особенностей учета нелинейной работы конструкций в нормативных документах по сейсмостойкому строи- тельству // Подсекция «Строительная механика и теория надежности конструкций» 71-й Научн.-методич. и на- учн.-исслед. конф. (с международным молодежным уча- стием). Тезисы докладов. 29 января – 7 февраля 2013. Москва: МАДИ. С. 67–69.
4. Dzhinchvelashvili G.A., Sosnin A.V. Analysis of some features of the account of nonlinear work of structures in the regulatory documents on earthquake-resistant construction. Subsection «Construction mechanics and theory of structural reliability» 71st Scientific-methodical and scientific-research conference (with international youth participation). Theses of reports. January 29 – February 7, 2013. Moscow: MARCSTU (MADI), pp. 67–69. (In Russian).
5. Rosenblueth E., Herrera I. On a Kind of Hysteretic Damping. Journal of Engineering Mechanics Division ASCE. 1964. No. 90, pp. 37–48.
6. Gülkan P., Sozen M.A. Inelastic responses of reinforced concrete structures to earthquake motions. Journal of the American Concrete Institute. 1974. Vol. 71, pp. 604–610.
7. Freeman S.A., Nicoletti J.P., Tyrell J.V. Evaluations of existing buildings for seismic risk: a case study of Puget Sound Naval Shipyard, Bremerton, Washington. Proceedings of the U.S. National Conference of Earthquake Engineering. EERI. Berkeley. California. 1975, pp. 113–122.
8. Соснин А.В. К вопросу учета диссипативных свойств многоэтажных железобетонных каркасных зданий массового строительства при оценке их сейсмостойко- сти // Современная наука и инновации. 2017. № 1 (17). С. 127–144.
8. Sosnin A.V. To the issue of taking into account the dissipative properties of multi-storey reinforced-concrete frame buildings of mass construction in assessing their seismic resistance. Sovremennaya nauka i innovatsii. 2017. No. 1 (17), pp. 127–144. (In Russian).
9. Fajfar P., Fischinger M. N2 – a method for non-linear seismic analysis of regular buildings. Proceedings of the 9-th World Conference on Earthquake Engineering. Tokyo, Japan. 1988. Vol. 5, pp. 111–116.
10. Fajfar P., Gaspersic P. The N2 method for the seismic damage analysis of rc buildings. Earthquake Engineering and Structural Dynamics. 1996. Vol. 25, pp. 31–46.
11. Kilar V., Fajfar P. Simplified push-over analysis of building structures. Proceedings of the 11-th World Conference of Earthquake Engineering. 1996. No. 11, p. 8.
12. Fajfar P. Capacity-spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics. 1999. Vol. 28, pp. 979–993.
13. Chopra A.K., Goel R.K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics. 2002. Vol. 31, pp. 561–582. DOI: 10.1002/eqe.144.
14. Chopra A.K., Goel R.K. Modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings: theory and preliminary evaluation. Report No. EERC 2003-08; Earthquake Engineering Research Center. University of California, 2003. 54 p.
15. Chopra A.K., Goel R.K., Chintanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands. Earthquake Spectra. 2004. Vol. 20. No. 3, pp. 757–778. DOI:10.1193/1.1775237.
16. Aydinoglu N.M., Kacmaz U. Strength based displacement amplification spectra for inelastic seismic performance evaluation. Report No. 2002/2; Department of Earthquake Engineering, Kandilli Observatory and Earthquake Research Institute. Bogazici University, Istanbul, Turkey. 2002. 32 p.
17. Ramirez O.M., Constantinou M.C., Whittaker A.S., Kircher C.A., Johnson M.W., Chrysostomou C.Z. Validation of the 2000 NEHRP provisions’ equivalent lateral force and modal analysis procedures for buildings with damping systems. Earthquake Spectra. 2003. Vol. 19. No. 4, pp. 981–999.
18. Ruiz-Garcia J., Miranda E. Inelastic displacement ratios for evaluation of existing structures. Earthquake Engineering & Structural Dynamics. 2003. Vol. 32. No. 8, pp. 1237–1258.
19. Chopra A.K., Chintanapakdee C. Inelastic deformation ratios for design and evaluation of structures: single-degree-offreedom bilinear systems. Journal of Structural Engineering. 2004. Vol. 130. No. 9, pp. 1309–1319.
20. Aydinoğlu M.N. An incremental response spectrum analysis procedure on inelastic spectral displacements for multi-mode seismic performance evaluation. Bulletin of Earthquake Engineering. 2003. Vol. 1. Iss. 1, pp. 3–36.
21. Jan T.S., Liu M.W., Kao Y.C. An upper-bound pushover analysis procedure for estimating the seismic demands ofhigh-rise buildings. Engineering Structures. 2004. Vol. 26. Iss. 1, pp. 117–128.
22. Fajfar P, Marusic D, Perus I. Torsional effects in the pushoverbased seismic analysis of buildings. Journal of Earthquake Engineering. 2005. Vol. 9 (6), pp. 831–854.
23. Powell G.H. Static pushover methods – explanation, comparison and implementation. The 8-th US National Conference on Earthquake Engineering. San Francisco. 2006. p. 10.
24. Kalkan E., Kunnath S.K. Adaptive modal combination procedure for nonlinear static analysis of building structures. ASCE, Journal of Structural Engineering. 2006. Vol. 132. No. 11, pp. 1721–1731.
25. Poursha M., Khoshnoudian F., Moghadam A.S. A consecutive modal pushover procedure for estimating the seismic demands of tall buildings. Engineering Structures. 2009. Vol. 31, pp. 591–599.
26. Yasrebinia Y., Poursharifi M. Investigation the 3D-pushover analysis of unsymmetrical concrete structures. The 15-th World Conference on Earthquake Engineering. Lisbon, Portugal. 2012. p. 9.
27. Tehrani M.H., Khoshnoudian F. Extended consecutive modal pushover procedure for estimating seismic responses of oneway asymmetric plan tall buildings considering soil-structure interaction. Earthquake Engineering and Engineering Vibration. 2014. Vol. 13, pp. 487–507. DOI: 10.1007/s11803- 014-0257-6.
28. Jinu Mary M., Cinitha A., Umesha P.K., Nagesh R.I., Eapen S. Seismic response of RC building by considering soil structure interaction. International Journal of Structural and Civil Engineering Research (IJSCER). 2014. Vol. 3. No. 1, pp. 160–172.
29. Wang F., Sun J.-G., Zhang N. An Improved multidimensional MPA procedure for bidirectional earthquake excitations. Scientific World Journal. 2014. Article ID 320756. DOI:10.1155/2014/320756.
30. Belejo A., Bento R. Evaluating the efficiency of recent nonlinear static procedures on the seismic assessment of an asymmetric plan building. Computational Methods, Seismic Protection, Hybrid Testing and Resilience in Earthquake Engineering. Part of the GGEE book series. Vol. 33, pp. 307–323.
31. Khoshnoudian F., Kiani M. Modified consecutive modal pushover procedure for seismic investigation of one-way asymmetric-plan tall buildings. Earthquake Engineering and Engineering Vibration. 2012. Vol. 11. Iss. 2, pp. 221–232.
32. Khoshnoudian F., Kiani M., Yang T.Y. A New pushover procedure for two-way asymmetric-plan tall buildings under bidirectional earthquakes. The Structural Design of Tall and Special Buildings. 2014. Vol. 23. Iss. 14, pp.1097–1117. DOI: 10.1002/tal.1110.
33. Соснин А.В. Об алгоритме уточнения коэффициента допускаемых повреждений K1 по кривой несущей спо- собности для проектирования железобетонных каркас- ных зданий массового строительства в сейсмических районах // Жилищное строительство. 2017. № 1–2. С. 60–70.
33. Sosnin A.V. About a refinement procedure of seismic-forcereduction factor K1 using a pushover curve for earthquakeresistance estimation of RC LSC frame buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 60–70. (In Russian).
34. Бирбраер А.Н. Расчет конструкций на сейсмостойкость. СПб.: Наука, 1998. 255 с.
34. Birbraer A.N. Raschet konstruktsiy na seismostoikost’ [Earthquake-resistance estimation of structures]. Saint Petersburg: Nauka. 1998. 255 p.
35. Уздин А.М. Что скрывается за линейно-спектральной теорией сейсмостойкости // Сейсмостойкое строитель- ство. Безопасность сооружений. 2009. № 2. С. 18–22.
35. Uzdin A.M. What lies behind the linear-spectral theory of seismic resistance. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy. 2009. No. 2, pp. 18–22. (In Russian).
36 НП-031-01. Нормы проектирования сейсмостойких атом- ных станций. М.: НТЦ ЯРБ. 2001. 48 с.
36. Normy proektirovaniya seysmostoykih atomnyh stanciy [NP-031-01. The design standard of earthquake-resistant nuclear power plants]. Moscow: Scientific and Technical Center for Nuclear and Radiation Safety. 2001. 48 p.
37. The M 6.3 Christchurch, New Zealand, Earthquake of February 22, 2011. Learning from Earthquakes, EERI Special Earthquake Report. Comerio M. et al. 2011. 16 p.
38. Jian S.K., Murty C.V.R. Proposed draft provisions and commentary on indian seismic Code IS1893 (Part 1. Criteria for Earthquake resistant design of structures and buildings. General provisions). 2002. 158 p.
39. Wang Y.A New round of updation of seismic design code of China. The 14-th World Conference on Earthquake Engineering. October 12–17. 2008. Beijing, China. 2008. 6 p.
40. Pourzanjani M. Seismic Design Criteria & Requirements Per CBC 2007. 2008. 61 p. URL: http://www.icclabc.org/ uploads/Seismic_Design_Criteria_2007_CBC_by_Mehran_ Pourzanjani.pdf
41. Килимник Л.Ш. К разработке методики оценки предель- ных состояний многоэтажных каркасных зданий при сейсмических воздействиях // Труды центрального на- учно-исследовательский института строительных кон- струкций имени В.А. Кучеренко. 1975. Вып. 44. С. 66–82.
41. Kilimnik L.Sh. To development of a limit-states-estimation methodology of multi-storey frame buildings under seismic loads. Proceedings of the Central Research Institute of Building Constructions named after V.A. Kucherenko. 1975. Vol. 44, pp. 66–82. (In Russian).
42. Мартемьянов А.И. Инженерный анализ последствий землетрясений 1946 и 1966 гг. в Ташкенте. Ташкент: ФАН, 1967.
42. Martem’yanov A.I. Inzhenernyj analiz posledstvij zemletryasenij 1946 i 1966 gg. v Tashkente [Engineering analysis of the consequences of earthquakes in 1946 and 1966 in Tashkent]. Tashkent: FAN. 1967.
43. Ашканадзе Г.Н. и др. Рекомендации по расчету и кон- струированию монолитных и панельных жилых зданий для сейсмических районов. М.: ЦНИИЭП жилища, 1985. 101 с.
43. Ashkanadze G.N and others. Rekomendacii po raschyotu i konstruirovaniyu monolitnyh i panel’nyh zhilyh zdanij dlya sejsmicheskih rajonov [Guidelines for Computation and Structural Design of Monolithic and Precast Panel Residential Buildings for Seismic Areas]. Moscow: CNIIEHP zhilishcha. 1985. 101 p.
44. Seismic Design of Concrete Structures. Preliminary Draft of an Appendix to the CEB-FIP Model Code. No. 133. Paris: Bull, CEB. 1986.
45. Seismic Hazard and Building Vulnerability in Post-Soviet Central Asian Republics ed. by S.A. King, V.I. Khalturin, B.E. Tucker. NATO Advanced Science Institute Series, 1999, 251 p.: Rzhevsky V. The December 7, 1988 Spitak, Armenia Earthquake: Results of Analysis of Structural Behavior, pp. 197–229.
46 Уздин А.М., Кузнецова И.О., Сахаров О.А. Пробле- ма обеспечения сейсмостойкости железнодорожного транспорта // Сейсмостойкое строительство. Безопас- ность сооружений. 2005. № 4. С. 43–47.
46. Uzdin A.M., Kuznecova I.O., Saharov O.A. An Earthquakeresistance ensuring problem of railway transport. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy. 2005. No. 4, pp. 43–47. (In Russian).
47. Сахаров О.А. Обоснование уровня расчетного сейсми- ческого воздействия при оценке сейсмостойкости зда- ний и сооружений, эксплуатируемых в особых условиях. Дисс… канд. техн. наук. СПб. 2011. 208 с.
47. Saharov O.A. Validation of design seismic action level at earthquake-resistance estimation of buildings and structures operated under specific conditions. Cand. Diss. (Engineering). Saint Petersburg. 2011. 208 p. (In Russian).
48. Назаров Ю.П., Ойзерман В.И. Метод трех моделей в рас- четах сооружений на сейсмические воздействия // Стро- ительная механика и расчет сооружений. 2007. № 6. С. 6–8.
48. Nazarov Yu.P., Oyzerman V.I. The three-models method for computations of structures on seismic actions. Stroitel’naya mekhanika i raschyot sooruzhenij. 2007. No. 6, pp. 6–8. (In Russian).
49. Назаров Ю.П. Проблемы актуализации СНиП II-7–81* // Строительный эксперт. 2010. № 11–12 (307). С. 11–13.
49. Nazarov Yu.P. Updating problems of the seismic building design code SNiP II-7–81*. Stroitel’niy ehkspert. 2010. No. 11–12 (307), pp. 11–13. (In Russian).
50. Курзанов А.М. Предложения по нормативному расчету сооружений на волновую сейсмическую нагрузку // Про- мышленное и гражданское строительство. 2010. № 9. С. 54–55.
50. Kurzanov A.M. Suggestions to a standard computation of structures on a wave seismic load. Promyshlennoe i grazhdanskoe stroitel’stvo. 2010. No. 9, pp. 54–55. (In Russian).
51. Айзенберг Я.М. «Актуализированная редакция и про- блемы дальнейшего развития СНиП II-7–81* «Стро- ительство в сейсмических районах» // Надежность и безопасность зданий и сооружений при сейсмических и аварийных воздействиях. Сборник трудов IV науч- но-практического семинара. 2 ноября 2011 г. Москва: МГСУ. С. 36–39.
51. Ajzenberg Ya.M. An updated version and problems of further development of the seismic building design code SNiP II-7–81*. Reliability and safety of buildings and structures under seismic and emergency influences. Proceedings of the IV scientific-practical seminar. November 2, 2011. Moscow: MUCE, pp. 36–39. (In Russian).
52. Мкртычев О.В., Джинчвелашвили Г.А., Дзержинский Р.И. Философия многоуровневого проектирования в свете обеспечения сейсмостойкости сооружений // Геология и геофизика Юга России. 2016. № 1. С. 71–78.
52. Mkrtychev O.V., Dzhinchvelashvili G.A., Dzerzhinskii R.I. Philosophy of multilevel design in the light of ensuring seismic stability of structures. Geologiya i geofizika Yuga Rossii. 2016. No. 1, pp. 71–78. (In Russian).
53. Джинчвелашвили Г.А., Мкртычев О.В., Соснин А.В. Анализ основных положений СП 14.13330.2011 «СНиП II-7-81*. Строительство в сейсмических районах» // Промышленное и гражданское строительство. 2011. № 9. С. 17–21.
53. Dzhinchvelashvili G.A., Mkrtychev O.V., Sosnin A.V. A main provisions analysis of the seismic building design code SP 14.13330.2011 «SNiP II-7-81* Construction in seismic areas». Promyshlennoe i grazhdanskoe stroitel’stvo. 2011. No. 9, pp. 17–21. (In Russian).
54. Джинчвелашвили Г.А., Мкртычев О.В., Соснин А.В. Анализ основных положений СП 14.13330.2011 «СНиП II-7–81*. Строительство в сейсмических райо- нах» // О возможных принципиальных ошибках в нормах проектирования, приводящих к дефициту сейсмостойко- сти сооружений в 1–2 балла. Сборник трудов семинара. 15 сентября 2011 г. М.: МГСУ. С. 19–27.
54. Dzhinchvelashvili G.A., Mkrtychev O.V., Sosnin A.V. A main provisions analysis of the seismic building design code SP 14.13330.2011 «SNiP II-7–81* Construction in seismic areas». On possible fundamental mistakes in design standards leading to a seismic resistance deficit of structures in 1–2 points. Collection of proceedings of the seminar. September 15, 2011. Moscow: MUCE, pp. 19–27.
55. Курзанов А.М. Еще раз об актуализированной редакции СНиП II-7–81* «Строительство в сейсмических районах» // Промышленное и гражданское строительство. 2011. № 8. С. 45–48. 55. Kurzanov A.M. Once again about an updated version of seismic building design code SNiP II-7–81* «Construction in seismic areas». Promyshlennoe i grazhdanskoe stroitel’stvo. 2011. No. 8, pp. 45–48. (In Russian).
56. Аминтаев Г.Ш. Опыт применения СП 14.13330.2014. Строительство в сейсмических районах // Материалы 5 общего заседания Научного совета Российской акаде- мии архитектуры и строительных наук по Сейсмологии и сейсмостойкому строительству (№ 62-С-05.2015 от 11.05.2015). Тезисы докладов. М.: РААСН. 4 с.
56. Amintaev G.Sh. An experience case based on seismic building design code SP 14.13330.2014 “Construction in seismic areas”. Materials of the 5-th meeting of the Scientific Council of the Russian Academy of Architecture and Construction Sciences on Seismology and Earthquake Engineering (No. 62-S-05.2015 of 11/05/2015). Theses of reports. Мoscow: RAACS. 4 p.
57. Денисенкова Н.Н., Джинчвелашвили Г.А. Политика в сфере образования и науки как инструмент модерниза- ции общества (на примере инженерной сейсмологии и сейсмостойкого строительства) // Геология и геофизика Юга России. 2016. № 3. С. 38–47.
57. Denisenkova N.N., Dzhinchvelashvili G.A. Policy in the field of education and science as an instrument for modernizing society (using the example of engineering seismology and earthquake-proof construction). Geologiya i geofizika Yuga Rossii. 2016. No. 3, pp. 38–47. (In Russian).
58. Zhang Zh., Cho Ch. Experimental study on damping ratios of in-situ buildings. World Academy of Science, Engineering and Technology. 2009. 5 p.
Index of Articles Published in the Journal «Housing Construction» in 2017 . . . . . . . . . . . . . . . . . 50
El_podpiska СИЛИЛИКАТэкс KERAMTEX elibrary interConPan_2024 Тротуарная плитка