Stroitel`nye Materialy №10

Table of contents

L.M. DOBSHITS, Doctor of Sciences (Engineering) ( Moscow State University of Railway Engineering (9, bldg. 9, Obraztsova Street, 127994, Moscow, Russian Federation)

Ways to Improve the Durability of Concretes Durability of concretes can be significantly improved under the condition of reasonable assignment of design requirements for concrete, correct choice of materials for its preparation, selection of concrete mix with due regard for the specified properties, compliance with the technology of preparation, placing, compaction, and care for concrete in the process of its active hardening and operation. Recommendations for achieving the best results for each of listed items are presented. It is noted that the concrete resistance to destruction will be more active, the higher its impermeability, which is affected by the value of the open porosity and sizes of pores. It is shown that the low frost resistance is another reason for insuffi- cient durability of concrete and reinforced concrete. Reasons and mechanism of formation of various types of pores (reserve, contraction, closed, conditionally closed, open) are consid- ered in details.

Keywords: durability, concrete mix, destruction, porosity, frost resistance, water impermeability, concrete, reinforced concrete.

For citation: Dobshits L.M. Ways to improve the durability of concretes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 4–9. (In Russian).

1. Moshchansky N.A. Plotnost’ i stoikost’ betonov [Density and firmness of concrete]. Moscow: Gostoyizdat. 1951. 251 p.
2. Sheykin A.E. Stroitel’nye materialy [Construction mate- rials]. Moscow: Stroyizdat. 1988. 432 p.
3. Kuntsevich O.V. Betony vysokoi morozostoikosti dlya sooruzhenii Krainego Severa [Concrete of high frost re- sistance for constructions of Far North]. Leningrad: Stroyizdat, 1983. 132 p.
4. Sheykin A.E., Dobshits L.M. Tsementnye betony vysokoi morozostoikosti [Cement concrete of high frost resis- tance]. Leningrad: Stroyizdat, 1989. 128 p.
5. Sheykin A.E., Dobshits L.M. About communication of criterion of frost resistance with real frost resistance of concrete. BetoniZhelezobeton. 1981. No. 1, pp. 19–20. (In Russian).
6. Sheykin A. E., Dobshits L.M., A.T. Baranov. Criteria of frost resistance of cellular concrete of autoclave curing. BetoniZhelezobeton. 1986. No. 5, pp. 31–32. (In Russian).
7. Dobshits L.M. Bases of increase in durability of concrete for transport constructions. Ensuring quality of rein- forced concrete of transport constructions. Scientific works of JSC TSNIIS. Moscow: JSC TSNIIS, 2006. Issue 236, pp. 51–62. (In Russian).
8. Davidson M. G. Vodonepronitsaemyi beton [Waterproof concrete]. Leningrad: Lenizdat, 1965. 98 p.
9. Kolokolnikova E.I. Dolgovechnost’ stroitel’nykh materi- alov (beton i zhelezobeton) [Durability of construction materials (concrete and reinforced concrete)]. Moscow: Vysshaya shkola, 1975. 159 p.
10. Gorchakov G.I. Povyshenie morozostoikosti i prochnosti betona [Increase in frost resistance and durability of con- crete]. Moscow: Promstroyizdat, 1956. 107 p.
11. Shestoperov S.V. Dolgovechnost’ betonov [Durability of concrete]. Moscow: Avtotransizdat, 1976. 267 p.
12. Sheykin A.E., Dobshits L.M. About purpose of brand of concrete on frost resistance. Ensuring quality of rein- forced concrete designs in severe climatic conditions and permafrost soil. Theses of reports of the All-Union con- ference. Yakutsk: IPO TsNTI, 1988, pp. 136–138. (In Russian).
13. Dobshits L.M., Klibanov A.L., Fedunov V.V. Tekhno- logiya of receiving high-strength, environmentally friend- ly, durable concrete with early terms of set of durability. VisnikOdeskoiDerzhavnoiAkademiiBudivnitsstvothatto Фrchitecture. 2009. No. 35, pp. 131–135.
14. Avtorskoe svidetel’stvo 1558882 (USSR). Sposob opre- deleniya sostava tyazhelogo betona [Way of determina- tion of composition of heavy concrete]. Sheykin A.E., Dobshits L.M. Declared 7.8.1997. Published 4.23.1990. Bulletin No. 15. (In Russian).
15. Patent RF No. 2308429. Kompleksnaya dobavka dlya betonnykh i rastvornykh smesei [Complex additive for concrete and the rastvornykh Mixes] Dobshits L.M., Fedunov V.V., Kruglov V.M., Sviridov O.S., Lomono- sova T.I., Hizhnyak V.M. Declared 10:04. 2006. Published 10.20.2007. Bulletin No. 29. (In Russian).
16. Patent RF No. 2319681. Sposob izgotovleniya betonnykh i zhelezobetonnykh izdelii [Way of production of con- crete and concrete goods]. Dobshits L.M., Kruglov V.M., Sviridov O.S., Lomonosov T.I., Krikunov O.I., Fedu- nov V.V. Declared 9.25.2006. Published 20.03.2008. Bulletin No. 8. (In Russian).
17. Avtorskoe svidetel’stvo1502545 (USSR). Sposob ud- lineniya srokov ekspluatatsii betonnykh i zhelezobeton- nykh elementov [Way of lengthening of terms of opera- tion of concrete and reinforced concrete elements]. Sheykin A.E., Dobshits L.M., Vernikov A.Ya., Prudov- sky D.M. Declared 12.2.1986. Published 8.23.1989. Bulletin No. 31. (In Russian).
S.V. FEDOSOV, Doctor of Sciences (Engineering), Academician of RAACS (, V.E. RUMYANTSEVA, Doctor of Sciences (Engineering), Adviser of RAACS (, V.S. KONOVALOVA, Candidate of Sciences (Engineering) (, A.S. EVSYAKOV, Engineer ( Ivanovo State Polytechnical University (20, 8 Marta Street, Ivanovo, 153037, Russian Federation)

Colmatation: Phenomenon, Theory, Prospects of Using for Control Over Concrete Corrosion Processes General information about peculiarities of the phenomenon of colmatation of pores and capillaries of the cement stone is presented; negative and positive consequences of the process of materials colmatation in various branches of the industry are also presented. Data revealing the increase in the strength characteristics of the cement stone at the initial stage when colmatating pores due to the structural transformations, which occur in the cement stone because of corrosion processes, are presented. Research in changes of the mineralogical composition of the cement stone in the course of fluid corrosion in the aggressive media containing chloride-ions has been conducted. The relation between changes in the structure and mineralogical composition of cement stone and the strength loss after effect of liquid aggressive media containing chloride-ions has been established. Mathematical models of the kinetics and dynamics of the mass transfer, accompanied by colmatation, at chemical corrosion of the cement stone are presented.

Keywords: colmatation, colmatation of pores, concrete corrosion, increasing the strength, structure of cement stone, mineralogical composition of concrete.

For citation: Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Evsyakov A.S. Colmatation: phenomenon, theory, prospects of using for control over concrete corrosion processes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 10–17. (In Russian).

1. Akhverdov I.N. Osnovy fiziki betona [Fundamentals of physics of concrete]. Moscow: Stroyizdat. 1981. 463 р.
2. Usherov-Marshak A.V. Betonovedenie: leksikon [Concrete Studies: Lexicon]. Moscow: Stroymaterialy. 2009. 112 р.
3. Szilvssy Z. Soils engineering for design of ponds, canals and dams in aquaculture. InlandAquacultureEngineering. FAO. Rome. 1984, pp. 79–101.
4. Akhverdov I.N. Vysokoprochnyi beton [High-strength concrete]. Moscow: Gosstroyizdat. 1961. 163 р.
5. Ivanov I.A. Legkie betony na iskusstvennykh poristykh zapolnitelyakh [Lightweight concretes on artificial po- rous aggregates]. Moscow: Stroyizdat. 1993. 182 р.
6. Rozental’ N.K. Permeability and corrosion resistance of concrete. PromyshlennoeiGrazhdanskoeStroitel’stvo. 2013. No. 1, pp. 35–37. (In Russian).
7. Rakhimbaev Sh.M., Karpacheva E.N., Tolypina N.M. On the choice of the type of cement based on the theory of colmatation in the complex composition of an aggres- sive environment. BetoniZhelezobeton. 2012. No. 5, pp. 25–26. (In Russian).
8. Rozental’ N.K., Rozental’ A.N., Lyubarskaya G.V. Corrosion of concrete during the interaction of alkalis with aggregate silica. BetoniZhelezobeton. 2012. No. 1, pp. 50–60. (In Russian).
9. Ivanov F.M., Lyubarskaya G.V., Rozental’ N.K. Interaction of concrete aggregates with alkalis of cement and additives. BetoniZhelezobeton. 1995. No. 1, pp. 15– 18. (In Russian).
10. Aksel’rud G.A., Molchanov A.D. Rastvorenie tverdyh veshhestv [Dissolution of solid substances] Moscow: Himiya. 1977. 272 р.
11. Rakhimbaev Sh.M. Kinetics of colmatation processes during chemical corrosion of cement systems. Betoni Zhelezobeton. 2012. No. 6, pp. 16–17. (In Russian).
12. Rakhimbaev Sh.M. Principles of choosing cements for use in conditions of chemical aggression. IzvestiyaVuzov. Stroitel’stvo. 1998. No. 10, pp. 65–68. (In Russian).
13. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ konstruktsii v agressivnoi promyshlennoi srede [Corrosion resistance of structures in an aggressive industrial envi- ronment]. Moscow: Stroyizdat. 1976. 206 р.
14. Rozental’ N.K. Problems of corrosive damage to con- crete. BetoniZhelezobeton. 2007. No. 6, pp. 29–31. (In Russian).
15. Bazhenov Yu.M. Tekhnologiya betona [Technology of concrete]. Moscow: Vysshaya shkola. 1987. 415 р.
16. Stroganov E.V., Meretsova G.S. Estimation of corrosion processes of concrete during optimization of sand-salt mix- es. VestnikTGASU. 2009. No. 2, pp. 105–111. (In Russian).
17. Pishch I.V., Barantseva S.E., Belanovich A.L., Lugin V.G. Hydrophobization – a promising way to improve the quality of wall ceramic materials. TrudyBGTU.Seriya3: KhimiyaiTekhnologiyaNeorganicheskikhVeshchestv. 2010. Vol. 1. No. 3, pp. 55–60. (In Russian).
18. Sheshukov A.P., Lychagin D.V., Makarov E.Ya. Investigation of the processes of formation of the structure of arbolite in the chemical activation of wood. Vestnik TomskogoGosudarstvennogoArkhitekturno-Stroitel’nogo Universiteta. 2014. No. 3 (44), pp. 145–152. (In Russian).
19. Leonovich S.N., Poleyko N.L., Zhuravskiy S.V., Temnikov Yu.N. Operational characteristics of concrete building structures with the use of “Kalmatron” system. Stroitel’nyeMaterialy [Construction Materials]. 2012. No. 11, pp. 64–66. (In Russian).
20. Leonovich S.N., Poleyko N.L., Temnikov Yu.N., Zhuravskii S.V. Physical and mechanical properties of con- crete with the addition of a penetrating system «Kalmatron». VestnikVolgogradskogoGosudarstvennogoArkhitekturno- Stroitel’nogoUniversiteta.Seriya:Stroitel’stvoiarkhitektura. 2013. No. 31–2 (50), pp. 124–131. (In Russian).
21. Kasatkina A.V., Solov’ev D.V., Stepanova I.V. Hydroprotective properties of cement-containing mate- rial of penetrating action when porous bases of different nature are used. BetoniZhelezobeton. 2012. No. 6, pp. 5–8. (In Russian).
22. Veselkov S.N., Grebennikov V.T. Composition and prop- erties of colmatizing formations of water intake wells. Ratsional’noeOsvoenieNedr. 2013. No. 6, pp. 44–47. (In Russian).
23. Blazhko L.S., Shtykov V.I., Kantsiber Yu.A., Ponoma- rev A.B., Chernyaev E.V. Protection from the collation of geotextile materials used in the ballast prism as a separa- tion layer. IzvestiyaPeterburgskogoUniversitetaPutei Soobshcheniya. 2014. No. 4 (41), pp. 22–26. (In Russian).
24. Bitimbaev M.Zh. Chemical colmatation and methods of its elimination in underground leaching of metals. Vestnik Natsional’noiInzhenernoiAkademiiRK. 2009. No. 2 (32), pp. 122–125. (In Russian).
25. Moskvin V.M., Ivanov F.M., Alekseev S.N., Guzeev E.A. Korroziya betona i zhelezobetona, metody ikh zashchity [Corrosion of concrete and reinforced concrete, methods of their protection]. Moscow: Stroyizdat. 1980. 536 р.
26. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ konstruktsii v agressivnoi promyshlennoi srede [Corrosion resistance of structures in an aggressive industrial envi- ronment]. Moscow: Stroyizdat. 1976. 205 р.
27. Rakhimbaev Sh.M., Tolypina N.M. Substantiation of the choice of the type of binder for aggressive environments of organic origin on the basis of the theory of heterogeneous physicochemical processes. VestnikBelgorodskogoGosu- darstvennogoTekhnologicheskogoUniversitetaim.V.G.Shu- khova. 2016. No. 9, pp. 159–163. (In Russian).
28. Rakhimbaev Sh.M., Tolypina N.M. Povyshenie korro- zionnoi stoikosti betonov putem ratsional’nogo vybora vyazhushchego i zapolnitelei [Increase of corrosion resistance of concrete by rational choice of binder and aggre- gates.]. Belgorod: BGTU. 2015. 321 р.
29. Starchukov D.S. Estimation of the effectiveness of the complex additive based on iron hydroxide for the produc- tion of high-strength concrete. BetoniZhelezobeton. 2012. No. 5, pp. 8–9. (In Russian).
30. Patent RF 2110495. Sposobprigotovleniyakompleksnoi dobavkiSiligran-2dlyatsementnykhstroitel’nykhsmesei [A method for preparing a complex additive SILIGRAN-2 for cement building mixtures]. Frumin D.A. Declared 03.20.1996. Published 05.10.1998. (In Russian).
31. Jonkers H.M., Schlangen E. Development of a bacteria- based self-healing concrete. TailorMadeConcrete Structures. Walraven & Stoelhorst (eds), Taylor & Francis Group, London. 2008, pp. 425–430.
32. Polak A.F. Fiziko-khimicheskie osnovy korrozii zhelezo- betona [Physicochemical basis of corrosion of reinforced concrete]. Ufa: UNI. 1982. 73 р.
33. Selyaev V.P., Sedova A.A., Kupriyashkina L.I., Osipov A.K. Influence of the concentration of phos- phoric acid and the degree of filling of the zeolite-bearing rock on the strength of the cement stone. IzvestiyaVuzov. Stroitel’stvo.2015. No. 8, pp. 13–20. (In Russian).
34. Berdov G.I., Vinogradov S.A., Mashkin A.N., Khritan- kov V.F. Dielcometric analysis of the effect of electrolyte solution on the properties of cement materials. Izvestiya Vuzov.Stroitel’stvo. 2015. No. 8, pp. 21–24. (In Russian).
35. Leonovich S.N., Prasol A.V. Reinforced concrete in con- ditions of chloride corrosion: deformation and destruc- tion. Stroitel’nyeMaterialy [Construction Materials]. 2013. No. 5, pp. 94–95. (In Russian).
36. Moskvin V.M., Royak G.S. Korroziya betona pri deistvii shchelochei tsementa na kremnezem zapolnitelya [Corrosion of concrete during the action of alkalis of cement on aggregate silica]. Moscow: Gosstroyizdat. 1962. 247 р.
37. Rumyantseva V.E., Konovalova V.S., Karavaev I.V., Loginova S.A. The influence of aggressive environments on the change of structural-phase composition of cement concrete and their strength characteristics. Information environmentoftheUniversity:materialsoftheXXIII Internationalscientificandtechnicalconference. Ivanovo: ISPU. 2016, pp. 372–376. (In Russian).
38. Rumyantseva V.E., Konovalova V.S., Karavaev I.V., Loginova S.A. Change of strength characteristics of con- crete with water-repellent additives at the liquid corrosion of the II type. Moderntrendsinthedevelopmentofscience andtechnologies. 2016. No. 4–3, pp. 104–107. (In Russian).
39. Kuznetsova I.N., Kosach A.F., Rashchupkina M.A., Gutareva N.A. Influence of the main minerals of cement stone on its structure and properties. IzvestiyaVuzov. Stroitel’stvo. 2015. No. 8, pp. 25–32. (In Russian).
40. Ryzhikov N.I., Mikhailov D.N., Shakov V.V. A method for calculating porosity distribution profiles and volume fractions of materials in a porous medium by analyzing X-ray microtomography data. TrudyMFTI. 2013. Vol. 5. No. 4 (20), pp. 161–169. (In Russian).
41. Al-Abduwani F.A.H., Farajzadeh R., Van den Broek W.M.G.T., Currie P.K., Zitha P.L.J. Filtration of mi- cron-sized particles in granular media revealed by x-ray computed tomography. ReviewofScientificInstruments. 2005. Vol. 76. doi:
42. De Zwart A.H. Experiment and theoretical investigation of clogging processes near production wells using X-ray Tomography. SPEAnnualTechnicalConferenceand Exhibition. 21–24 September 2008. Denver, Colorado, USA.
43. Nikitina L.V., Larionova Z.M., Lapshina A.M. Phase transformations of ettringite in expanding systems. Physico- chemicalStudiesofConcretesandtheirConstituents ProceedingsofNIIZhB. Moscow. 1975. No. 17, pp. 39–55. (In Russian).
44. Zhdanok S.A., Khrustalev B.M., Batyanovskii E.I., Leonovich S.N. Nanotechnologies in Building Materials Science: Reality and Prospects. VestnikBelorusskogo Natsional’nogoTekhnicheskogoUniversiteta. 2009. No. 3, pp. 5–23. (In Russian).
45. Leonovich S.N., Gurinovich V.Yu., Burakov V.S., Rai- kov S.N. Spectral analysis of mineralogical composition of cement. TekhnologiiBetonov. 2009. No. 6, pp. 46–47. (In Russian).
46. Butt Yu.M., Okorokov S.D., Sychev M.M., Timashev V.V. Tekhnologiya vyazhushchikh veshchestv [Technology of binders]. Moscow: Vysshaya shkola. 1965. 620 р.
47. Konovalova V.S., Karavaev I.V., Loginova S.A. X-ray analysis of cement stone. Youngscientists–developmentof textile-industrialcluster(SEARCH-2016):acollectionof materialsoftheinteruniversityscientific-technicalconference ofpost-graduatestudentsandstudentswithinternational participation. Ivanovo. 2016, pp. 98–99. (In Russian).
48. Rakhimbaev Sh.M., Tolypin NM Thermodynamic analysis of acid corrosion. Scientificandpracticalconferencededicated tothe85thanniversaryofBazhenovYu.M.:thecollectionofcon- ferencematerials. Belgorod. 2015, pp. 549–552. (In Russian).
49. Polak A.F. Osnovy modelirovanija korrozii zhelezobeto- na [Basics of modeling the corrosion of reinforced con- crete]. Ufa: UNI. 1986. 69 р.
50. Klyueva N.V., Androsova N.B., Gubanova M.S. Criterion of strength of corrosion damaged concrete under complex stress state. Stroitel’nayaMekhanikaInzhenernykhKonstruktsiii Sooruzhenii. 2015. No. 1, pp. 38–42. (In Russian).
51. Klueva N.V., Emelyanov S.A., Kolchunov V.I. Criterion of crack resistance of corrosion damaged concrete in plane stress state. ProcediaEngineering. 2015. No. 117 (1), pp. 179–185.
52. Gusev B.V., Faivusovich A.S., Stepanova V.F., Rozen- tal’ N.K. Matematicheskie modeli protsessov korrozii betona [Mathematical models of processes of corrosion of concrete]. Moscow: TIMR. 1996. 104 p.
Confidence in the Future is Now Ensured . Bet on Prefabricated Reinforced Concrete Elements . (Information) . . . . . . .18
К.Б. САФАРОВ1, инженер (; В.Ф. СТЕПАНОВА2, д-р техн. наук (; В.Р. ФАЛИКМАН1,2, д-р материаловедения (
1 Национальный исследовательский Московский государственный строительный университет (129337, г. Москва, Ярославское ш., 26)
2 Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона (НИИЖБ) им. А.А. Гвоздева (109428, г. Москва, 2-я Институтская ул., 6, корп. 5)
Влияние механоактивированной низкокальциевой золы-уноса на коррозионную стойкость гидротехнических бетонов Рогунской ГЭС Известно, что введение в состав бетона активных минеральных добавок, таких как микрокремнезем, зола-уноса, доменный шлак, снижают расширение бетона, вызванное проявлением реакционной способности заполнителей и сульфатной коррозией, однако механизм данного процесса остается до конца не исследованным. В работе проведено исследование влияния низкокальциевой золы-уноса на процессы одновременного протекания щелочной реакции заполнителей и сульфатной коррозии бетона. Изучены возможности механоактивации низкокальциевой золы-уноса для повышения ее активности. Показано, что прочность образцов цементно-песчаных растворов с 20% механоактивированной золы-уноса превышает прочности образцов без золы и образцов с 20% исходной золы на 18 и 21% соответственно, значительно повышая в то же время коррозионную стойкость бетона. Достаточно подробно описаны разнообразные приемы активации минеральных добавок при различных воздействиях.

Ключевые слова: бетон, реакционная способность заполнителей, сульфатная коррозия, низкокальциевая зола-уноса, механоактивация.

Для цитирования: Сафаров К.Б., Степанова В.Ф., Фаликман В.Р. Влияние механоактивированной низкокальциевой золы-уноса на коррозион ную стойкость гидротехнических бетонов Рогунской ГЭС // Строительные материалы. 2017. № 9. С. 20–24.

Список литературы
1. Сафаров К.Б. Применение реакционноспособных заполнителей для получения бетонов, стойких в агрессивных средах // Строительные материалы. 2015. № 7. С. 17–20.
2. Фаликман В.Р., Сафаров К.Б., Степанова В.Ф. Высокоэффективные бетоны для гидротехнических сооружений с применением реакционноспособных заполнителей // ICACMS-2017 Proceedings. IIT Madras. Chennai, India (в печати).
3. Pan J.W., Feng Y.T., Wang J.T., Sun Q.C., Zhang C.H., Owen D.R.J. Modeling of alkali-silica reaction in concrete: a review // Frontier of Structural Civil Engineering. 2012. Vol. 6. Iss. 1, pp. 1–18.
4. Thomas M.D.A. The effect of supplementary cementing materials on alkali-silica reaction: A review // Cement and Concrete Research. 2011. Vol. 41. Iss. 12, pp. 1224–1231
5. Розенталь Н.К., Розенталь А.Н., Любарская Г.В. Коррозия бетона при взаимодействии щелочей с диоксидом кремния заполнителя // Бетон и железо бетон. 2012. № 1. C. 50–60.
6. Сафаров К.Б., Степанова В.Ф. Регулирование реак ционной способности заполнителей и повышение сульфатостойкости бетонов путем совместного при менения низкокальциевой золы-уноса и высокоак тивного метакаолина // Строительные материалы. 2016. № 5. C. 70–73.
7. Лукутцова Н.П., Пыкин А.А. Теоретические и техно логические аспекты получения микро- и нанодисперсных добавок на основе шунгитосодержащих пород для бето на: Монография. Брянск: Изд-во БГИТА, 2013. 231 с.
8. Сорвачева Ю.А. Влияние нанокремнезема на кине тику протекания щелочной коррозии бетона // Известия ПГУПС. 2014. № 2. С. 118–123.
9. Розенталь Н.К., Любарская Г.В. Розенталь А.Н. Испытания бетона с реакционноспособными за полнителями // Бетон и железобетон. 2014. № 5. С. 24–29.
10. Alderete N.M., Villagran Zaccardi Yu.A., Coelho Dos Santos G.S., De Belie N. Particle size distribution and specific surface area of scm’s compared through experimental techniques // International RILEM Conference Materials Systems and Structures in Civil Engineering 2016 (MSSCE 2016) on Concrete with Supplementary Cementitious Materials. 2016. 470 p.
Production Of Wall Panels On The Long Stands Nordimpianti In Georgia (Information) . . . . . .26
R.A. IBRAGIMOV1, Candidate of Sciences (Engineering) (; E.V. KOROLEV2, Doctor of Sciences (Engineering) (; T.R. DEBERDEEV 3, Doctor of Sciences (Engineering), V.V. LEKSIN3 , Candidate of Sciences (Physics and Mathematics)
1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
2 Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Kazan National Research Technological University (68, K. Marksa Street, Kazan, 420015, Russian Federation)

Durability of Heavy-Weight Concrete with Portland Cement Treated in Apparatus of Vortex Layer At present, the tendency of improving physical-mechanical properties of building material due to the activation of raw components is observed. One of the methods is the activation of cement in the apparatus of vortex layer. The paper presents the data on optimization of parameters of the apparatus of vortex layer by means of realization of the four-factor plan of the second order for heavy-weight concrete of B25 class. On the basis of the experiment planning, optimal parameters of operation of the apparatus of vortex layer, sizes of ferromagnetic particles and relation of ferromagnetic particles to the material activated were revealed. The mathematical dependence of durability of heavy-weight concrete at the age of 1 and 28 days of hardening on the independent variables was found. At optimal conditions of the apparatus of vortex layer operation, improving the compression strength of heavy-weight concrete takes place at the first day of hardening by 2.44 times and at the grade age – by 1.48 times.

Keywords: activation, binder, vortex layer, ferromagnetic particles, heavy-weight concrete.

For citation: Ibragimov R.A., Korolev E.V., Deberdeev T.R., Leksin V.V. Durability of heavy-weight concrete with portland cement treated in apparatus of vortex layer. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 28–31. (In Russian).

Список литературы / References
1. Ушеров-Маршак А.В. Современный бетон и его тех- нологии // Бетон и железобетон. 2009. С. 20–25.
1. Usherov-Marshak A.V. Modern concrete and its technologies. Beton i Zhelezobeton. 2009, pp. 20–25. (In Russian).
2. Королев Е.В. Принцип реализации нанотехнологии в строительном материаловедении // Строительные материалы. 2013. № 6. С. 60–64.
2. Korolev E.V. Principle of realization of nanotechnology in building materials science. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 60–64. (In Russian).
3. Rajesh, D.V.S.P., Narender Reddy A., Venkata Tilak U., Raghavendra M. Performance of alkali activated slag with various alkali activators. International Journal of Innovative Research in Science, Engineering and Technology. 2013. No. 2, pp. 378–386.
4. Benes L., Minar L. Geopolymer as a bonding agent in braking segment composites. Proceed. 3rd International Symposium «Non-traditional cement&concrete». Brno. 2008, pp. 86–89.
5. Bakharev T., Sanjayan J.G., Cheng Y.B. Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research. 2001. No. 30 (9), pp. 1367–1374.
6. Van Jaarsveld J.G.S., Van Deventer J.S.J., Lukey G.C. The effect of composition and temperature on the properties of fly ash and kaolinite – based geopolymers. Chemical Engineering Journal. 2002. No. 89, pp. 63–73.
7. Fediuk R.S. Mechanical activation of construction binder materials by various mills. Materials Science and Engineering. 2016. No. 125, pp. 1–7.
8. Sadique M., Al-Nageima H., Athertona W., Setonb L., Dempsterb N. Mechano-chemical activation of high-Ca fly ash by cement free blending and gypsum aided grinding. Construction and Building Materials. 2013. No. 43, pp. 480–489.
9. Balaz P. Mechanochemistry in nanoscience and minerals engineering. Berlin-Heidelberg: Springer-Verlag. 2008. 413 p.
10. Bouzoubaa N., Zhang M.N., Bilodeau A., Malhotra V.M. The effect of grinding on the physical properties of fly ashes and a portland cement clinker. Cement and Concrete Research. 1997. No. 27, pp. 1861–1874.
11. Bergold S.T., Goetz-Neunhoeffer F., Neubauer J. Mechanically activated alite: New insights into alite hydration. Cement and Concrete Research. 2015. No. 76, pp. 202–211.
12. Sekulic Z., Petrov M., Zivanovic D. Mechanical activation of various cements. International Journal of Mineral Processing. 2004. No. 74, pp. 355–363.
13. Sekulic Z., Popova S., uri ica M., Rosic A. Mechanical activation of cement with addition of fly ash. Materials Letters. 1999. No. 39, pp. 115–121.
14. Scian A.N., Porto López J.M., Pereira E. Mechanochemical activation of high alumina cements-hydration behaviour. Cement and Concrete Research. 1991. No. 21, pp. 51–60.
15. Kalinkin A.M., Krzhizhanovskaya M.G., Gurevich B.I., Kalinkina E.V., Tyukavkina V.V. Hydration of mechanically activated blended cements studied by in situ X-ray diffraction. Inorganic Materials. 2015. No. 51, pp. 828–833.
16. Emoto T., Bier T.A. Rheological behavior as influenced by plasticizers and hydration kinetics. Cement and Concrete Research. 2007. No. 37 (5), pp. 647–654.
17. Puertas F., Santos H., Palacios M., Mart nez Ram rez S. Polycarboxylate superplasticizer admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Advances in Cement Research. 2005. Vol. 17. No. 2, pp. 77–89.
18. Sakai E., Kasuga T., Sugiyama T., Asaga K., Daimon M. Influence of superplasticizers on the hydration of cement and the pore structure of hardened cement. Cement and Concrete Research. 2006. Vol. 36. No. 11, pp. 2049–2053.
19. Логвиненко Д.Д., Шеляков О.П. Интенсификация технологических процессов в аппаратах с вихревым слоем. Киев: Техника, 1976. 144 с.
19. Logvinenko D.D., Shelyakov O.P. Intensifikatsiya tekhnologicheskikh protsessov v apparatakh s vikhrevym sloem [Intensification of technological processes in devices with a vortex layer]. Kiev: Tekhnika. 1976. 144 p.
20. Mischenko M.V., Bokov M.M., Grishaev M.E. Activation of technological processes of materials in the device rotary electromagnetic field. Technical Sciences. 2015. No. 2, pp. 3508–3512. 21. Филонов И.А., Явруян Х.С. Механическая активация портландцемента в аппарате вихревого слоя // Инженерный вестник Дона. 2012. № 3 (21). С. 678–681.
21. Filonov I.A., Yavruyan Kh.S. Mechanical activation of Portland cement in the vortex layer apparatus. Inzhenernyi Vestnik Dona. 2012. No. 3 (21), pp. 678–681. (In Russian).
22. Явруян Х.С., Филонов И.А. Гомогенизация наномо- дифицированных цементных систем и подбор пара- метров их обработки в установках с вихревым слоем // Вестник Московского государственного строитель- ного университета. 2013. № 2. С. 130–136.
22. Yavruyan Kh.S., Filonov I.A. Homogenization of nanomodified cement systems and selection of parameters for their processing in installations with a vortex layer. Vestnik Moskovskogo Gosudarstvennogo Stroitel’nogo Universiteta. 2013. No. 2, pp. 130–136. (In Russian).
V.V. RUSINA1, Candidate of Sciences (Engineering) (, Yu.Yu. DUBROVINA 1, Candidate of Sciences (Engineering); E.I. CHERNOV 2, Engineer (
1 Kostroma State Agricultural Academy (34, Karavaevskaya Village, Campus, Kostroma District, Kostroma Region, 156530, Russian Federation)
2 “Mostootryad-6” Yaroslavl territorial firm, branch of PJSC “Mostotrest” (64A, Tutaevskoye Highway, Yaroslavl, 150033, Russian Federation)

Concretes for Enclosing Structures on the Basis of Waste of Wood Machining Advantages of composites on the basis of mineral binders and an organic filler from the waste of logging, lumbering, and machining are shown. Negative qualities of a wood filler which make it difficult to obtain material of high strength are determined. Organo-mineral concretes for wall structures, in which the waste of wood machining – sawdust and bark – are used as a light filler, and slag- and ash-alkaline binders consisting of ash-slag wastes and liquid glass from micro-silica serve as mineral binders, are proposed. Quite high physical-mechani- cal characteristics of such concretes due to the phase composition of the binders used and the peculiarities of liquid glass are explained. Processes and phenomena, which take place when forming the contact zone of wood filler – binder, have being studied. It is concluded that concretes obtained on the basis of waste of larch machining and slag- and ash-alkaline binders on the liquid glass from micro-silica meet all the requirements for enclosing structures. The possibility of using the bark, as a filler, is shown. It is noted that for the successful use of bark , the simultaneous use of low- and high-module liquid glass is needed. For regions where metallurgic slag and furnace bottom ash from coal burning are absent, it is pro- posed to use the peat ash for organo-mineral concretes.

Keywords: wood fillers, arbolite, liquid glass, ash-slag wastes, concretes of enclosing structures.

For citation: Rusina V.V., Dubrovina Yu.Yu., Chernov E.I. Concretes for enclosing structures on the basis of waste of wood machining. Stroitel’nye Materialy [Construction Materials]. 2017. No. 9, pp. 32–35. (In Russian).

1. Lukash A.A., Lukuttsova N.P. Novye stroitel’nye materialy i izdeliya iz drevesiny [New construction materials and products from wood]. Moscow: ASV. 2015. 288 p.
2. Chulkova I.L., Pastushenko I.V., Parfenov A.S. Construction composites on the basis of local technogenic raw materials. Tekhnologii Betonov. 2014. No. 3 (92), pp. 12–13. (In Russian).
3. Barakhtenko V.V., Burdonov A.E., Zelinskaya E.V., Tolmacheva N.A., Golovnina A.V., Samorokov V.E. Research of properties of modern construction materials on the basis of industrial wastes. Fundamental’nye Issledovaniya. 2013. No. 10–12, pp. 2599–2603. (In Russian).
4. Buzhevich G.A., Savin V.I. Sostoyanie i osnovnye napravleniya nauchno-issledovatel’skikh rabot po arbolitu. Arbolit. Proizvodstvo i primenenie [State and main directions of research works on wood concrete. Wood concrete. Production and application]. Moscow: Stroyizdat. 1979. 36 p.
5. Nanazashvili I.Kh. Arbolit – effektivnyi stroitel’nyi material [Wood concrete – effective construction material]. Moscow: Stroyizdat. 1984. 121 p.
6. Kilyusheva N.V., Danilov V.E., Aizenshtadt A.M. Heat insulation material produced from pine bark and its extract. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 48–51. (In Russian).
7. Rusina V.V. Ash-slag-alkali binders on the basis of liquid glass from impurities-containing microsilica. Stroitel’- nye Materialy [Construction Materials]. 2011. No. 11, pp. 25–28. (In Russian).
8. Rusina V.V. Regularities of formation of structure and properties of microsilicon dioxide. Beton i Zhelezobeton. 2009. No. 3, pp. 20–23. (In Russian).
9. Lukash A.A., Lukuttsova N.P. Perspectivity of producing building materials from wood with heart rot. Stroitel’nye Materialy Materialy [Construction Materials]. 2016. No. 9, pp. 85–88. (In Russian).
10. Mingaleeva G.R., Shamsutdinov E.V., Afanas’eva O.V., Fedotov A.I., Ermolaev D.V. Current trends of processing and use of cindery and slag waste of thermal power plant and boiler rooms. Sovremennye problemy nauki i obrazovaniya. 2014. No. 6, p. 225. ( elibrary_22877254_27213876.pdf). (In Russian).
11. Yatsenko E.A., Grushko I.S., Gol’tsman B.M. Experience of creation of construction materials on the basis of the evils and slags of thermal power plants. Nauchnoe Obozrenie. 2014. No. 9-2, pp. 443–448. (In Russian).
12. Panibratov Yu.P., Staroverov V.D. To a question of use of the evils of thermal power plant in concrete. Tekhnologii Betonov. 2012. No. 1-2, pp. 43–47. (In Russian).
E.A. BARTENYEVA, Master (, N.A. MASHKIN, Doctor of Science (Engineering) ( Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN) (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)

Research in Properties of Modified Foam Concrete The actual problem for the construction is to reduce the density and heat conductivity of cellular concretes by introducing modifying additives. Results of the study of non-autoclaved concrete on the basis of fly ash modified with additives are presented. Properties of the foam and non-autoclaved foam concrete with introducing additive-electrolytes, fiber and mineral additives are considered. In the course of the study conducted it is established that the use of mineral additives such as diopside and wollastonite is the most efficient in the non-auto- claved foam concrete with protein-based foaming agent. These modifiers make it possible to improve the aggregate stability of the foam concrete mix. The proposed composition and production technology of foam concrete products provide the reduction in the average density of the material in comparison with the control composition when introducing the wollas- tonite additive by 31%, when introducing the diopside by 54%. The heat conductivity factor when introducing the wollastonite and diopside is reduced up to 41–43% in comparison with the control composition. The foam stability factor is increased in the mortar mix by 9.5% when introducing the wollastonite, by 25% when introducing the diopside.

Keywords: cellular concrete, foam concrete, protein-based foaming agent, additive-electrolytes, fly ash, wollastonite, diopside.

For citation: Bartenyeva E.A., Mashkin N.A. Research in properties of modified foam concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 36–40. (In Russian).

1. Gerasimov M.M., Letyagina A.N. Advantages of using cast foam concrete in modern construction. Actual problems of managing the economy and finance of transport companies: a collection of works of the National Scientific and Practical Conference. Moscow. 2016, pp. 70–73. (In Russian).
2. Lundyshev I.A. The history of work with monolithic foam concrete in housing construction. solutions, problems, and features. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 5, pp. 67–72. (In Russian).
3. Slavcheva G.S., Chernyshov E.M., Novikov M.V. Thermal efficient foam concretes of a new generation for low-rise construction. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 20–24. (In Russian).
4. Anikanova T.V., Rakhimbaev Sh.M. Penobetony dlya intensivnykh tekhnologii stroitel’stva [Foam concrete for intensive construction technology]. Belgorod: BSTU. 2015. 127 p.
5. Morgun L.V. Penobeton [Foam concrete]. Rostov-on- Don: RGSU. 2012. 154 p.
6. Rakhimbaev Sh.M., Polovneva A.V., Anikanova T.V. The effect of new electrolyte additives on the properties of fine-grained concrete. Izvestiya Vysshikh Uchebnykh Zavedeniy. Stroitel’stvo. 2015. No. 11–12 (683–684), pp. 12–17. (In Russian).
7. Kudyakov A.I., Steshenko A.B. Foam concrete, dispersed- reinforced, heat-insulated, natural hardening. Vestnik TGASU. 2014. No. 2 (43), pp. 127–133. (In Russian).
8. Zhukov A.D., Rudnitskaya V.A. Foam concrete reinforced with basalt fiber. Vestnik MGSU. 2012. No. 6, pp. 83–86. (In Russian).
9. Kadomtseva E.E., Morgun L.V., Beskopylnaya N.I., Morgun V.N., Berdnik Ya.A. Research in influence of bi-modularity of fiber foam concrete on strength of reinforced beams. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 52–55. (In Russian).
10. Khasanov N.M. The use of natural wollastonite as a reinforcing and stabilizing additive in the composition of SCHM. Vestnik Grazhdanskikh Inzhenerov. 2016. No. 3, pp. 181–186. (In Russian).
11. Berdov G.I., Il’ina L.V., Zyryanova V.N. Vliyanie mineral’nykh mikronapolnitelei na svoistva kompozitsionnykh stroitel’nykh materialov [The influence of mineral micro fillers on the properties of composite building materials]. Novosibirsk: NGASU (Sibstrin). 2013. 124 p.
Y.A. GONCHAROV 1 , Engineer, Chairman of the Board of Directors, G.G. DUBROVINA 1 , Research Engineer Technical Advisor(; A.G. GUBSKAYA 2 , Candidate of Sciences (Engineering), Head of Laboratory(
1 JSC “BELGIPS” (24, Kozlova Street, Republic of Belarus, 220037, Minsk)
2 SE “Institute NIISM” (23, Minina Street, Republic of Belarus, 220014, Minsk)

Gypsum Boards for Protection of Premises against Penetration of Radon One of the main signs of violation of the ecological balance between natural factors and human activity is the increasing of the radiation background, created by both natural and artifi- cial (anthropogenic) sources of radiation. The mechanism of effect of radon and short-lived daughter products of radon on human beings, the ways of their penetration into buildings are described. By measuring the flux density of radon from the surface of a brick without covering and with covering, it is shown that the use of protective coverings makes it possible to reduce the flux density of radon from the surface of building structures. Protective materials for protection against radon (with a low radon penetration) must have a high density and a low specific efficient activity of natural radionuclides. Formulations for the production of gypsum boards for the protection of premises against penetration of radon have been devel- oped. It is revealed that the grade of flux density of radon when finishing the concrete and brick with a radon protection gypsum slab is reduced by 2.3–3 times depending on the quan- tity of an added chemically modified carbon additive.

Keywords: radon, radon-protecting gypsum slab, flux density of radon.

For citation: Goncharov Y.A., Dubrovina G.G., Gubskaya A.G. Gypsum boards for protection of premises against penetration of radon. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 41–44. (In Russian).

1. ICRP Publication 126: Radiological protection against radon exposure. Annals of the ICRP. 2014. Vol. 43. Iss. 3, p. 73.
2. ICRP Publication 115: Lung cancer risk from radon and progeny and statement on radon. Annals of the ICRP. 2010. Vol. 40. Iss. 1, p. 64.
3. BFS 2011:26, BFS 2015:3 Boverkets byggregler (föreskrifter och allmänna räd) [Electronic resource]. Available at:
4. Council Directive 2013/59EURATOM of December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 9743/Euratom, 2003/122/Euratom. Official Journal of the European Union. 2014. Vol. 17. Iss. 1, p. 73.
5. Lyutsko A.M., Rolevich I.V., Ternov V.I. Chernobyl’: shans vyzhit’ [Chernobyl: a chance to survive]. Minsk: Polymya. 1996. 182 p.
6. Krisyuk E.M. Radiatsionnyi fon pomeshcheniy [Radiation background of premises.]. Moscow: Energoatomizdat. 1989. 119 p.
7. Chumak A.G., Derevyanko V.N., Petrunin S.Yu., Popov M.Yu., Vaganov V.E. Structure and properties of composite material based on gypsum binder and carbon nanotubes. Nanotekhnologii v Stroitel’stve. Internet Journal. 2013. No. 2, pp. 27–37. (In Russian).
8. Yarmoshenko I.V., Zhukovskiy M.V., Ekidin A.A. Modeling radon intake in dwellings. ANRI. 1999. No. 4 (19), pp. 17–26. (In Russian).
9. Nagorskiy P.M., Ippolitov I.I., Smirnov S.V., Yakovleva V.S., Karataev V.D., Vukolov A.V., Zukau V.V. Features of monitoring of radioactivity in the “lithosphere-atmosphere” system for β- and γ-radiation. Izvestiya vuzov. Fizika. 2010. Vol. 53.No. 11, pp. 55–59. (In Russian).
10. Malmqvist L. Expositionsratens beroende av byggnadsmaterials densitet, tjocklek och aktivitetsinnehåll. Stockholm: Statens Strålskyddsinstitut, 1974. 29 p. (In Swedish).
11. Årgärder mot radon i bostäden. Вoverket myndigheter för samhällsplanering, byggande ock boende. Sverige, 2013 år. (In Swedish).
T.E. КHAEV1, Engineer (, E.V. TKACH1, Doctor of Sciences (Engineering) (; D.V. ORESHKIN 2, Doctor of Sciences (Engineering) (
1 Russian Federation National Research Moscow State Construction University (26, Yaroslavl Highway, Moscow 129337, Russian Federation)
2 Russian Federation Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, (4, Kryukovskij tupik, Moscow, 111020, Russian Federation)

Modified lightweight gypsum material with hollow glass microspheres for restoration works In the article material science problems of gypsum materials for restoration parts, elements of stucco in the architectural monuments in Russia. Traditional plaster mixtures have a high average density of up to 1900 kg/m 3 , which is unacceptable for a restoration of the weakened wooden load-bearing structures of palaces and other objects. Known to facilitate bulking in a plaster mixture: sawdust, expanded perlite and vermiculite, granules of foamed glass, foam, hollow ceramic microspheres lead to the loss of white and a sharp decrease in strength. The authors suggest for the high-quality restoration lightweight gypsum materials white color with hollow glass microspheres (HGMS), hydrophobic-plasticizing additive. It is possible to obtain gypsum grades G5 and G4 at an average density of 1102 and 531 kg/ m 3 , respectively. The article presents x-ray diffraction and microstructural studies and proven that PSMS and supplements features could have their significant effect on the interplanar distances of the lattice, the intensity of peaks, their angles and dimensions of crystals of gypsum matrix.

Keywords: light weight gypsum material, the properties of the mixture and stone, hollow glass microspheres, powder x-ray diffraction and microstructural studies, the interplanar dis- tances of the lattice, sizes of crystals of gypsum matrix.

For citation: Кhaev T.E., Tkach E.V., Oreshkin D.V. Modified lightweight gypsum material with hollow glass microspheres for restoration works. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 45–50. (In Russian).

1. Oreshkin D.V. Effective lightweight grouting solutions for conditions of abnormally low bed pressure and permafrost. Neftyanoe Hozyajstvo. 2008. No. 1, pp. 50–53. (In Russian).
2. Perfilov V.A., Oreshkin D.V., Semenov V.S. Environmentally Safe Mortar and Grouting Solutions with Hollow Glass Microspheres. Volume 150, 2016, Pages 1479–1484. 2nd International Conference on Industrial Engineering (ICIE-2016). Procedia Engineering (2016) pp. 1479–1484.
3. Oreshkin D.V. Lightweight and ultralight cement solutions for construction. Stroitel’nye Materialy [Construction Materials]. 2010. No. 6, pp. 34–37. (In Russian).
4. Кhaev T.E., Tkach E.V., Oreshkin D.V. Scientific and technical prerequisite for the elaboration of the lightweight gypsum systems with hollow glass microspheres for restoration works. Nauchnoe Obozrenie. 2017. No. 7, pp. 28–32. (In Russian).
5. Ferronskaya A.V., Korovjakov V.F., Baranov I.M., Bur’yanov A.F., etc. Gips v malojetazhnom stroitel’stve [Gypsum in low-rise construction]. Moscow: ASV. 2008. 240 p.
6. Meshheryakov Yu.G., Fedorov S.V. Malojetazhnye doma iz gipsobetona [Low-rise houses from gypsum concrete]. St. Petersburg: SPbGASU. 2003. 105 p.
7. Rakhimov R.Z., Khaliullin M.I. Status and development trends of the industry of gypsum building materials. Stroitel’nye Materialy [Construction Materials]. 2010. No. 12, pp. 52–53. (In Russian).
8. Bur’yanov A.F. Effective gypsum materials for the installation of interior partitions. Stroitel’nye Materialy [Construction Materials]. 2008. No. 8, pp. 30–32. (In Russian).
9. Pustovgar A.P., Bur’yanov A.F., Vasilik P.G. Features of the application of giperplasticizer in dry construction mixtures. Stroitel’nye Materialy [Construction Materials] 2010. No. 12, pp. 61–64. (In Russian).
10. Yakovlev G., Polyanskikh I., Fedorova G., Gordina A., Buryanov A. Anhydrite and gypsum compositions modified with ultrafine man-made admixtures. Procedia Engineering “7th Scientific Technical Conference Material Problems in Civil Engineering”.Vol. 108, 2015, p. 13–21.
Yu.N.HAKIMULLIN1,Doctor of Sciences (Engineering); D.A. AYUPOV2, Candidate of Sciences (Engineering), V.I. SUNDUKOV2, Candidate of Sciences (Physics and Mathematics), R.I. KAZAKULOV2, Engineer; B.I. GIZATULLIN3, Candidate of Sciences (Physics and Mathematics)
1 Kazan National Research Technological University (72, Karl Marx Street, 420015, Kazan, Russian Federation)
2 Kazan State University of Architecture and Engineering (1, Zelenaya Street, 420043, Kazan, Russian Federation)
3 Kazan (Volga region) Federal University (16a, Kremlevskaya Street, 420111, Kazan Russian Federation)

Non-Stratified Three-Component Polymeric-Bitumen Binders Modification of petroleum road bitumen with a copolymer of ethylene with vinyl acetate (CEV) and 3-glycidyloxypropyltrimethoxysilane (epoxy silane) has been implemented. Epoxy silane, being a heterofunctional substance, sews the bitumen with CEV which makes it possible to obtain a non-stratified polymeric-bitumen binder. To optimize the concentrations of epoxy silane and sevylene as well as the time of the combination of components, a three-factor rotatable experimental plan has been realized. As a result, it is established that the optimal content of sevylene is 12 pts. wt., epoxy silane – 3 pts. wt., duration of combination – 4 hr. An optimal BPB (polymeric-bitumen binder) has the following properties: softening temperature is 66°C, penetration at 25°C – 50; penetration index – 2.15, brittleness temperature – 22°C. Stratification is significantly reduced. The NMR spectroscopy method made it possible to establish that the sewing of the polymeric-bitumen binder doesn’t influence on its molecular mobility.

Keywords: bitumen modification, non-stratified PBB, stability of PBB, stratification of PBB.

For citation: Hakimullin Yu.N., Ayupov D.A., Sundukov V.I., Kazakulov R.I., Gizatullin B.I. Non-stratified three-component polymeric-bitumen binders. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 51–55. (In Russian).

1. Vysotskaya M.A., Kuznetsov D.A., Barabash D.E. Nanostructured road-building materials based on organic binders. Stroitel’nye Materialy [Construction Materials]. 2013. No. 12, pp. 63–64. (In Russian).
2. Belyaev P.S., Malikov O.G., Merkulov S.A., Polushkin D.L., Frolov V.A. Solution of polymer waste utilization problem by using them in the process of road binder modifying. Stroitel’nye Materialy [Construction Materials]. 2013. No. 10, pp. 38–41. (In Russian).
3. Murafa A.V., Makarov D.B., Nuriev M.A., Khozin V.G. Bitumen-latex emulsion mastics of waterproofing and sealing purpose. Klei. Germetiki. Tekhnologii. 2012. No. 8, pp. 18–21. (In Russian).
4. Kalinina M.O. The application of innovative materials in road construction. Modern technologies: current issues, achievements and innovations: a collection of articles by the winners of the III International Scientific and Practical Conference. Penza: PSUAC. 2016, pp. 19–22. (In Russian).
5. Kindeev O.N., Vysotskaya M.A., Shekhovtsova S.Yu. The influence of the plasticizer type on bitumen and polymer-bituminous binders properties. Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V.G. Shukhova. 2016. No. 1, pp. 26–30. (In Russian).
6. Shekhovtsova S.Yu., Vysotskaya M.A. The effect of carbon nanotubes on the PMB and asphalt concrete properties. Vestnik MGSU. 2015. No. 11, pp. 110–119. (In Russian).
7. Bespalov V.L. Bitumen-polymer binders and asphalt polymer concrete, modified by Elvaloy AM and butadiene methyl styrene rubber SKMS-30. Sovremennoe Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2015. Vol. 11. No. 1, pp. 27–33. (In Russian).
8. Smolyakova K.R., Sharova A.I., Agapkina N.A., Baskakova A.G., Safina G.F. Synthesis of polymer-bitumen binders for road construction and study of their commercial characteristics. Science of SUSU: materials of the 66th scientific conference. A series of natural sciences sections. Chelyabinsk: SUSU. 2014, pp. 369–374. (In Russian).
9. Zolotarev V.A., Galkin A.V., Kishchinskii S.V. Polymer modified bitumens storage stability estimation. Nauka iTekhnika v Dorozhnoi Otrasli. 2006. No. 2, pp. 18–21. (In Russian).
10. Zolotarev V.A. Bitumen modified by polymers and asphalt- polymer concrete. Dorozhnaya Tekhnika. 2009, pp. 16–23. (In Russian).
11. Zakieva R.R., Gussamov I.I., Gadel’shin R.M., Petrov S.M., Ibragimova D.A., Fakhrutdinov R.Z. The influence of modifying by ethylene-vinyl acetate copolymer on the performance properties of binder and asphaltbased concrete. Khimiya i Tekhnologiya Topliv i Masel. 2015. No. 5 (591), pp. 36–39. (In Russian).
12. Gadel’shin R.M., Ibragimova D.A., Zakieva R.R., Abdel’salyam Ya.I., Petrov S.M. Modification of oxidized bitumens with oxygen-containing compounds. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2014. Vol. 17. No. 14, pp. 451–453. (In Russian).
13. Fang C., Zhou S., Zhang M., Zhao S., Wang X., Zheng C. Optimization of the modification technologies of asphalt by using waste EVA from packaging. Journal of Vinyl and Additive Technology. 2009. Vol. 15. No. 3, pp. 199–203.
14. Upadhyay S., Mallikarjunan V., Subbaraj V.K., Varughese S. Swelling and diffusion characteristics of polar and nonpolar polymers in asphalt. Journal of Applied Polymer Science. 2008. Vol. 109. No. 1, pp. 135–143.
15. Belyaev P.S., Polushkin D.L., Makeev P.V., Frolov V.A. Modification of oil road bitumen with polymeric materials for production of asphalt-concrete coatings with enhanced performance characteristics. Vestnik Tambovskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2016. Vol. 22. No. 2, pp. 264–271. (In Russian).
16. Ayupov D.A., Murafa A.V., Potapova L.I., Yagund E.M., Makarov D.B., Kazakulov R.I., Khakimullin Yu.N. Epoxidized silane as crosslinking agent between bitumen and polymer modifier. Izvestiya KGASU. 2015. No. 4, pp. 253–358. (In Russian).
17. Tonevitskii Yu.V., Mognonov D.M., Ayurova O.Zh., Kuznetsov Yu.N. Modification of road bitumen by production waste. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 59–62. (In Russian).
18. Ayupov D.A., Potapova L.I., Murafa A.V., Fakhrutdinova V.Kh., Khakimullin Yu.N., Khozin V.G. The peculiarities of bitumens and polymers interaction investigation. Izvestiya KGASU. 2011. No. 1 (15), pp. 140–146. (In Russian).
19. Rusanova S.N., Stoyanov O.V., Remizov A.B., Yanaeva A.O., Gerasimov V.K., Chalykh A.E. The IR spectroscopic study of the ethylene copolymers silanol modification. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2010. No. 9, pp. 346–352. (In Russian).
20. Rusanova S.N., Stoyanov O.V., Remizov A.B., Yanaeva A.O., Gerasimov V.K., Chalykh A.E. The IR spectroscopic study of the ethylsilicate and ethylene with acrylates copolymers interaction. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2010. No. 9, pp. 318–328. (In Russian).
21. Rusanova S.N., Temnikova N.E., Mukhamedzyanova E.R., Stoyanov O.V. The modification of ethylene and aminotrialkoxysilane copolymers. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2010. No. 9, pp. 353–355. (In Russian).
22. Tusar M., Avsenik L. Increasing the rate of recycled asphalt: an experimental study. Transport Problems. 2014. Vol. 9. No. 3, pp. 31–42.
23. Sheina T.V. Samokhina A.A. Interrelation of the fractional composition, supramolecular structure and operational parameters of road bitumen. Part II. Gradostroitel’stvo i Arkhitektura. 2015. No. 4 (21), pp. 108–114. (In Russian).
I.F. SHLEGEL, Candidate of Sciences (Engineering), General Director (, S.G. MAKAROV, Engineer, Head of Department Institute of New Technologies and Automation of Building Materials Industry (OOO «INTA-STROY») (100, 1-ya Putevaya Street, 644113, Omsk. Russian Federation)

Issues of Sawdust Treatment It is noted that the quality of sawdust grinding, used in the technology of ceramic brick and lightweight refractories as a thinning or burning-out additive, significantly influences on the technol- ogy and quality of ready-made production. A new device for re-grinding of sawdust “Kesar” after the sieve with polyhedral drum, which is traditionally used in the ceramic brick technology, is presented. Technical characteristics of the device and characteristics of sawdust before and after re-grinding in it are given. It is shown that the grinder “Kesar” has been successfully tested at the “Sukhoy Log Refractory Works” and installed in the technological line. Two schemes of installation of the grinder “Kesar” in the line for producing the ceramic brick are proposed.

Keywords: ceramic brick, lightweight refractory, sawdust, sieve with polyhedral drum, grinder “Kesar”.

For citation: Shlegel I.F., Makarov S.G. Issues of sawdust treatment. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 56–57. (In Russian).

1. Vysotskaya M.A., Kuznetsov D.A., Barabash D.E. Nanostructured road-building materials based on organic binders. Stroitel’nye Materialy [Construction Materials]. 2013. No. 12, pp. 63–64. (In Russian).
2. Belyaev P.S., Malikov O.G., Merkulov S.A., Polushkin D.L., Frolov V.A. Solution of polymer waste utilization problem by using them in the process of road binder modifying. Stroitel’nye Materialy [Construction Materials]. 2013. No. 10, pp. 38–41. (In Russian).
3. Murafa A.V., Makarov D.B., Nuriev M.A., Khozin V.G. Bitumen-latex emulsion mastics of waterproofing and sealing purpose. Klei. Germetiki. Tekhnologii. 2012. No. 8, pp. 18–21. (In Russian).
4. Kalinina M.O. The application of innovative materials in road construction. Modern technologies: current issues, achievements and innovations: a collection of articles by the winners of the III International Scientific and Practical Conference. Penza: PSUAC. 2016, pp. 19–22. (In Russian).
5. Kindeev O.N., Vysotskaya M.A., Shekhovtsova S.Yu. The influence of the plasticizer type on bitumen and polymer-bituminous binders properties. Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V.G. Shukhova. 2016. No. 1, pp. 26–30. (In Russian).
6. Shekhovtsova S.Yu., Vysotskaya M.A. The effect of carbon nanotubes on the PMB and asphalt concrete properties. Vestnik MGSU. 2015. No. 11, pp. 110–119. (In Russian).
7. Bespalov V.L. Bitumen-polymer binders and asphalt polymer concrete, modified by Elvaloy AM and butadiene methyl styrene rubber SKMS-30. Sovremennoe Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2015. Vol. 11. No. 1, pp. 27–33. (In Russian).
8. Smolyakova K.R., Sharova A.I., Agapkina N.A., Baskakova A.G., Safina G.F. Synthesis of polymer-bitumen binders for road construction and study of their commercial characteristics. Science of SUSU: materials of the 66th scientific conference. A series of natural sciences sections. Chelyabinsk: SUSU. 2014, pp. 369–374. (In Russian).
9. Zolotarev V.A., Galkin A.V., Kishchinskii S.V. Polymer modified bitumens storage stability estimation. Nauka i

1. Kashkaev I.S., Sheinman E.Sh. Proizvodstvo glinyanogo kirpicha [Production of clay brick.]. M.: Vysshaya shkola. 1978. 248 p.
2. Patent RF 166991. Ustroistvo dlya separatsii i izmel’cheniya opilok [An apparatus for separating and pulverizing sawdust]. Shlegel’ I.F. Declared 26.07.2016. Published 20.12.2016. Bulletin No. 35.
3. Shlegel I.F., Shaevich G.Ja., Makarov S.G., Liberova G.G., Turov M.G., Chelyshev V.V. Tests of a cutting automatic machine under extreme conditions. Stroitel’nye Materialy [Construction Materials]. 2017. No. 9, pp. 30–31. (In Russian).
M.V. GRAVIT, Candidate of Sciences (Engineering), Docent (, A.S. KULESHIN, Bachelor (, S.V. BELYAEVA, Engineer Peter the Great St. Petersburg Polytechnic University (29, Polytechnicheskaya Street, Saint Petersburg, 195251, Russian Federation)

National Standards for Rigid Spray-On PUR and PIR Foams Differences between properties of the rigid foam polyurethane and polyisocyanurate (PUR and PIR foams) are presented. A brief review of studies of the foams modification with the purpose to improve heat insulation properties and reduce the flammability is made. A comparative analysis of technical characteristics of various producers of rigid PUR and PIR foams is presented. Problems of the market conditions of producing foam polyurethane and polyisocyanurate in Russia are identified. In the situation when most of the raw components for PUR and PIR at the Russian market are imported, the import substitution with domestic components is very relevant. It is established that the further development of the technology of producing heat insulation spray-on rigid PUR and PIR foams demands the uniformity of technical characteristics of primary components and ready-made products, the creation of uni- form information base for for raw materials and auxiliary materials which are used when producing PUR and PIR foams, development of the RF national standards for execution of works and for components for the spray-on foam polyurethane, for methods of quality assessment of the ready-made foam.

Keywords: heat insulation, foam polyurethane, foam polyisocyanurate, spray-on systems, rigid foam.

For citation: Gravit M.V., Kuleshin A.S., Belyaeva S.V. National standards for rigid spray-on PUR and PIR foams. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 58–64. (In Russian).

1. Vatin N.I., Velichkin V.Z., Gorshkov A.S., Pestryakov I.I., Peshkov A.A., Nemova D.V., Kiski S.S. Album of technical solutions for the use of insulation products from polyurethane foam of the trade mark “Spu-insulation” in the construction of residential, public and industrial buildings. Stroitel’stvo Unikal’nykh Zdaniy i Sooruzheniy. Application. 2013. No. 3, pp. 1–264. (In Russian). 2. Gorshkov A.S., Vatin N.I., Datsyuk T.A., Bezrukov A.Yu., Nemova D.V., Kakula P., Viitanen A. Album of technical solutions for the application of insulation products from polyurethane foam in the construction of residential, public and industrial buildings. Stroitel’stvo Unikal’nykh Zdaniy i Sooruzheniy. Application. 2014. No. 5, pp. 1–50. (In Russian). 3. Thermoplastic Polyurethane Elastomers Elastollan. Material Properties. 2017. http://www.polyurethanes. content/group/Arbeitsgebiete_und_Produkte/ Thermoplastische_Spezialelastomere/Infomaterial/elastollan_ material_uk.pdf (Date of access 09.02.2017).
4. Zhukov A.D., Smirnova T.V., Chugunkov A.V., Khimich A.O. Features of heat treatment of high-porosity layered materials. Vestnik MGSU. 2013. No. 5, pp. 96–102. (In Russian). 5. Dmitrienko S.G., Apyari V.V. Penopoliuretany: sorbtsionnoe kontsentrirovanie i primenenie v khimicheskom analize [Polyurethane foams: sorption concentrating and use in chemical analysis]. Moscow: Nauka. 2010. 264 p. 6. Voloskova E.V., Poluboyarov V.A., Gorbunov F.K., Gur’yanova T.I., Andryushkova O.V., Goncharov A.I. Modification of polyurethane foam by nanodispersed ceramic particles. Vestnik Kemerovskogo Gosudarstvennogo Universiteta. 2010. No. 1, pp. 8–12 (In Russian). 7. Kairyt Agn , Vaitkus Saulius, Bal nas Giedrius. The impact of chain extender on the properties of polyurethane foam based on rapeseed oil polyol obtained via chemo-enzymatic route. Engineering Structures and Technologies. 2016. No. 3, pp. 101–107. 8. Kirpluks M., Cabulis U., Avots A. Insulation materials in context of sustainability. Riga, Latvia: Latvian State Institute of Wood Chemistry. 2016, pp. 85–111. 9. Korneev A.D., Goncharova M.A., Shatalov G.A. Technology of composite tiles with thermal insulation filled with polyurethane foam. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 92–95. (In Russian). 10. Vairo G., Pellacani L., Golini P., Lotti L. Enhanced polyisocyanurate foams for metal faced panels. http:// pdfs/noreg/109-01836.pdf (Date of access 02.02.2017). 11. Lifeng Wu, Janine Van Gemert, Rafael E. Camargo. Rheology study in polyurethane rigid foams. http://www. MC1CD1F5AB7BB1738E040EBCD2B6B01F1/ Products_MC1CD1F5AB8081738E040EBCD2B6B01F 1/Construction_MC1CD1F5AEF051738E040EBCD2B 6B01F1/Technical%20presentati_MC1CD1F5AF6F41 738E040EBCD2B6B01F1/files/cpi_08_lifengwu_ revised.pdf (Date of access 03.02.2017). 12. Sachchida N. Singh, Jody S. Fife, Sheila Dubs, Paul D. Coleman. Effect of formulation parameters on performance of polyisocyanurate laminate boardstock insulation. Media%20Library/a_MC1CD1F5AB7BB1738E040EB CD2B6B01F1/Products_MC1CD1F5AB8081738E040 EBCD2B6B01F1/Construction_MC1CD1F5AEF0517 38E040EBCD2B6B01F1/Technical%20presentati_MC 1CD1F5AF6F41738E040EBCD2B6B01F1/files/api06_ huntsman_construction_paper.pdf (Date of access 05.02.2017). 13. Eremina T.Yu., Gravit M.V., Dmitrieva Yu.N. Means of fire protection of building structures analysis of general provisions of Russian and European regulations. Arkhitektura i Stroitel’stvo Rossii. 2012. No. 8, pp. 24–29. (In Russian). 14. Eremina T.Yu., Gravit M.V., Dmitrieva Yu.N. Constructive means of fire protection. Analysis of European regulations. Arkhitektura i Stroitel’stvo Rossii. 2012. No. 9, pp. 30–36. (In Russian). 15. Cabulis U., Kirpluks M., Stirna U., Lopez M.J., VargasGarcia M.C. Rigid polyurethane foams obtained from tall oil and filed with natural fiers: Application as a support for immobilization of lignin degrading microorganisms. Journal of Cellular Plastics. 2012. No. 48, pp. 500–515. 16. Gao L., Zheng G., Zhou Y., Hu L., Feng G., Zhang M. Synergistic effect of expandable graphite, diethylethylphosphonate and organically-modifid layereddouble hydroxide on flme retardancy and fie behaviorof polyisocyanurate-polyurethane foam nanocomposite. Polymer Degradation and Stability. 2014. No. 101, pp. 92–101. 17. Feng F., Qian L. The flame retardant behaviors and synergistic effect of expandable graphite and dimethylmethylphosphonate in rigid polyurethane foams. Polymer Composites. 2013. No. 35, pp. 301–309. 18. Paciorek-Sadowska J., Czuprynski B., Liszkowska J. Chair of chemistry and technology of polyurethanes. Bydgoszcz: Casimir the Great University. 2012, pp. 302–306. 19. Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science. 2009. No. 34, pp. 1068–1133. 20. Mosiewicki M. A., Aranguren M. I. A short review on novel biocomposites based on plant oil precursors. European Polymer Journal. 2013. No. 49, pp. 1243–1256. 21. Zieleniewska M., Leszczy ski M. K., Kura ska M., Prociak A., Szczepkowski L., Krzy owska M., Ryszkowska J. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Industrial Crops and Products. 2015. No. 74, pp. 887–897. 22. Ognestoikost’ i pozharnaya opasnost’ konstruktsii pokrytii na osnove stal’nogo profilirovannogo lista s polimernym uteplitelem [Fire resistance and fire hazard coating structures based on steel profiled sheet with a polymer insulation]. Moscow: FGBU VNIIPO Russian Emergency Situations Ministry, 2015. 29 p. 23. Gravit M.V. Fire resistance of building structures in European and Russian standards. Standarty i Kachestvo. 2014. No. 2, pp. 36–37. (In Russian). Требования к статьям, направляемым
СИЛИЛИКАТэкс KERAMTEX elibrary interConPan_2020 osm21