Sitemap

Stroitel`nye Materialy №12

Stroitel`nye Materialy №12
December, 2017

Table of contents

Важным направлением деятельности МИАП КЕРАМТЭКС является организация де ловых поездок руководителей и ведущих специалистов российских кирпичных заводов на зарубежные машиностроительные предприятия и кирпичные заводы. Во время таких встреч коллеги имеют возможность провести переговоры непосредственно с руковод ством компаний, обсудить достоинства и преимущества различного оборудования, а так же оценить работу оборудования на действующих кирпичных заводах. В последние годы наблюдается взаимный интерес российских предприятий и маши ностроительных и инжиниринговых компаний из Испании и Португалии. Представители компаний этих стран стали активно принимать участие в конференции КЕРАМТЭКС, публи ковать информацию в журнале «Строительные материалы»®. Закономерным развитием взаимоотношений стала поездка группы КЕРАМТЭКС на предприятия компаний «ВЕРДЕС», «ФОРГЕСТАЛ», «БЕРАЛМАР» (Испания) и «МЕТАЛСЕРТИ МА» (Португалия), которая состоялась в октябре 2017 г
Холдинг НК-ТЕПЛОХИММОНТАЖ основан в 1992 г. в городе Старый Оскол Белгородской области, он аккумулирует уникальный производственный опыт, приобретенный в сфере металлургии, нефте химии, цементной промышленности, тепловой и атомной генерации.
A.Yu. STOLBOUSHKIN1, Doctor of Sciences (Engineering) (stanyr@list.ru), A.I. IVANOV1, Engineer, V.V. SHEVCHENKO1, Engineer, O.A. FOMINA1, Candidate of Sciences (Engineering); M.S. DRUZHININ2, Student (dms95@mail.ru)
1 Siberian State Industrial University (42, Kirov Street, Novokuznetsk, 654007, Russian Federation)
2 Saint-Petersburg State University of Architecture and Civil Engineering (4, 2-nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

Study on Structure and Properties of Cellular Ceramic Materials with a Framework from Dispersed Silica-Containing Rocks* The studies on structure and physical and mechanical properties of ceramic wall materials with a glass-crystalline framework from dispersed silica-containing rocks are provided. The examination results of chemical, mineralogical and granulometric compositions of tripolite and granulated foam-glass crystalline material (GFGCM) are presented. The dependence of physical and mechanical properties of ceramic materials on GFGCM content in the composition of the batch in the amount from 5 to 75% is determined. In the conditions of a brick factory test samples of ceramic bricks, having a compressive strength 12–17 MPa and an average density 980–1250 kg/m3 with dimensions 65120250 mm and 6 semi-closed caves, were produced from granulated batch. At the macroscale level the cellular structure of the ceramic material consists of a glass crystalline framework and closed pores of round shape with a vitrified inner surface. It was established that after firing the walls of the framework are represented by quartz, feldspar and hematite.

Keywords: dispersed silica-containing rocks, tripolite, granulated foam-glass crystalline material, cellular ceramic materials, glass crystalline framework, closed pores.

For citation: Stolboushkin A.Yu., Ivanov A.I., Shevchenko V.V., Fomina O.A., Druzhinin M.S. Study on structure and properties of cellular ceramic materials with a framework from dispersed silica-containing rocks. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 7–13. (In Russian).

References
1. Kudyakov A.I., Koval’chuk A.A., Bondarenko T.Yu., Steshenko A.B. QMS Management of technological processes of products life cycle. Proceedings of XVII International scientific and practice conf. Tomsk: TPU. 2012, pp. 70–74. (In Russian).
2. Letter of the State Construction Committee of Russia from 01.02.2000 No. NM-368/3 «About heat protection of buildings under construction and operated buildings» Newsletter «Normalization, standardization and certification in the construction» No. 2. 2000. (In Russian).
3. Gagarin V.G., Kozlov V.V. Requirements for heat protection and energy efficiency in the project of the updated Construction Norms & Regulations «Thermal protection of buildings». Zhilishchnoe Stroitel’stvo [Housing Construction]. 2011. No. 8, pp. 2–6. (In Russian).
4. Pavlov V.F., Shabanov V.F. Use of foam silicate from ash and slag wastes for the production of unburned bricks. Stroitel’nye Materialy [Construction Materials]. 2001. No. 7, pp. 22–23. (In Russian).
5. Kopanica N.O., Kudyakov A.I., Sarkisov Yu.S. Stenovye stroitel’nye materialy na osnove modificirovannyh torfov Sibiri [Wall building materials based on modified peat of Siberia]. Tomsk: TSUAB. 2013. 295 p. (In Russian).
6. Kotlyar V.D., Yavruyan H.S. Wall ceramic products based on fine dispersed products of recycling of refuse heap. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 38–41. (In Russian).
7. Bessonov I.V., Shigapov R.I., Babkov V.V. Heatinsulation foamed gypsum in low-rise construction. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 9–12. (In Russian).
8. Kazanceva L.K., Vereshchagin V.I., Ovcharenko G.I. Foamed glass-ceramic heat-insulation materials from natural raw materials. Stroitel’nye Materialy [Construction Materials]. 2001. No. 4, pp. 33–34. (In Russian).
9. Evtushenko E.I., Peretokina N.A. Production of cellular ceramoconcrete based on highly concentrated binding suspensions. Izvestiya vysshih uchebnyh zavedenij. Stroitel’stvo. 2007. No. 9, pp. 28–31. (In Russian).
10. Kotlyar V.D., Kozlov A.V., Kotlyar A.V. Highly effective wall ceramics based on porous-hollow silicate aggregate. Nauchnoe obozrenie. 2014. No. 10, pp. 392. (In Russian).
11. Kazanceva L.K., Puzanov I.S., Nikitin A.I. Foam ceramics. Features of manufacture and its properties. High Tech and Innovation (XXII Scientific Conference). Technology and construction of composite materials: Proceedings of the international scientific-practical conference. Belgorod: BGTU. 2016. Vol. 1, pp. 143–147. (In Russian).
12. Patent RF 2593832. Sposob izgotovleniya stenovyh keramicheskih izdelij [Method of manufacturing wall ceramic products]. Ivanov A.I., Stolboushkin A.Yu., Storozhenko G.I. Declared 08.06.2015. Published 10.08.2016. Bulletin No. 22. (In Russian).
13. Ivanov A.I., Stolboushkin A.Yu., Storozhenko G.I. Principles of optimal structure formation of ceramic semidry pressed brick. Stroitel’nye Materialy [Construction Materials]. 2015. No. 4, pp. 65–70. (In Russian).
14. Stolboushkin A.Yu., Fomina O.A., Ivanov A.I. Production of cellular ceramics with a vitro-crystalline space frame. High Tech and Innovation (XXII Scientific Conference). Technology and construction of composite materials: Proceedings of the international scientific-practical conference. Belgorod: BGTU. 2016. Vol. 1, pp. 390–395. (In Russian).
15. Stolboushkin A.Yu., Zorya V.N. Development and use of software for mathematical processing of the experimental results. New construction technologies 2005: a collection of scientific papers. Novokuzneck: SibSIU. 2005, pp. 200–209. (In Russian).
Kh.S. YAVRUYAN, Candidate of Sciences (Engineering) (khungianos@mail.ru), E.S. GAYSHUN, Engineer, A.V. KOTLYAR, Engineer Don State Technical University (162, Sotsialisticheskaya Street, Rostov-on-Don, 344022, Russian Federation)

Features of Compression Molding of Fine-Disperse Products of Coal Washing When Producing Ceramic Brick The relevance and possibility of using by-products of the coal industry (BPCI) as raw materials for producing wall ceramic articles are shown. The necessity to classify the byproducts of coal getting is determined. For fractions of 0–0.5 the name is proposed – Fine-disperse products of coal washing (FPC). Main properties, characteristics and material composition of these materials, which factually are ready-made charge for producing wall ceramics, are presented. Features of FPC pressing are also presented. Peculiarities of pressing of fine-disperse products of coal washing when producing high-efficient wall ceramic articles with reduced self-cost by means of compression molding of products are presented. Interconnection between various properties of obtained products depending on the compression conditions and technological factors is established. Within the intervals of the specific pressing pressures from 10 to 40 MPa, the compression factor is from 2.0 to 2.25 units due to the fine-disperse composition of FPC. At this, an ambitious task is put: produce the product with a minimal self-cost with the additional extraction of heat energy when producing the use of which can have a wide spectrum of application.

Keywords: resource saving, wall ceramics, fine-disperse products, coal washing, compression molding, compression factor.

For citation: Yavruyan Kh.S., Gayshun E.S., Kotlyar A.V. Features of compression molding of fine-disperse products of coal washing when producing ceramic brick. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 14–17. (In Russian).

References
1. Kotlyar V.D., Kozlov A.V., Kotlyar A.V., Teriohina U.V. Features the claystone of East Donbass as raw materials for production of wall ceramics. Vestnik MGSU. 2014. No. 10, pp. 95–105. (In Russian).
2. Stolboushkin A.Yu. Wall ceramic materials of matrix structure on the basis of enrichment of waste carbonaceous argillites. Izvestiya Vuzov. Stroitelstvo. 2013. No. 2–3, pp. 28–36. (In Russian)
3. Efimov V.I., Nikulin I.B., Rybak V.L. The use of waste coal enrich-ment and optimization of resources by the environmental factor. Izvestiya TulGU. Nauki o zemle. 2014. No. 1, pp. 85–95. (In Russian).
4. Kotlyar V.D., Yavruyan K.S. Wall ceramic products on the basis of finely dispersed products of processing waste heaps. Stroitel’nye materialy. [Construction Materials]. 2017. No. 4, pp. 38–41. (In Russian).
5. Burmistrov V.N., Varshavskaya D.A., Novinskaya V.T. and others. Ispol’zovanie otkhodov ugol’noi promyshlennosti v kachestve syr’ya dlya proizvodstva keramicheskikh stenovykh izdelii [The use of coal industry waste as raw material for the production of ceramic wall products]. Moscow: VNIIESM. 1976. 44 p.
6. Zolotarskii A.Z., Sheiman E.Sh. Proizvodstvo keramicheskogo kirpicha [Manufacture of ceramic bricks]. Moscow: Vysshaja shkola. 1989. 264 p.
7. Stolboushkin A.Yu., Storozhenko G.I. Waste of coal enrichment as a raw material and energy base of ceramic wall materials plants. Stroitel’nye materialy. [Construction Materials]. 2011. No. 4, pp. 43–46. (In Russian).
8. Seregin A.I. Processing of coal slurries into commodity products by unconventional physical and chemical effects. Cand. Diss. (Engineering). Moscow. 2009. 183 p.
9. Kotlyar V.D., Ustinov A.V., Terekhina Yu.V., Kotlyar A.V. Features of the process of calcination of coal slurries in the production of wall ceramics. Tekhnika i technologii silicatov. 2014. No. 4, pp. 8–15. (In Russian).
10. Kotlyar V., Yavruyan K. Thin issues products of processing waste heaps as raw materials for ceramic wall products. MATEC Web of Con-ferences. 2017. No. 129, 05013. (ISSN: 2261-236X, France).
Factories with a line of hand molding Easymud: Made in Italy (Information) ..... 24
В сентябре 2017 г. в Крыму (Алушта) состоялась ХI специализированная конфе ренция СИЛИКАТэкс. В ее работе приняло участие более 60 специалистов – представители заводов силикатного кирпича, производства извести и других отраслей промышленности строительных материалов, машиностроительных и инжиниринговых компаний, на учных и некоммерческих организаций из 23 регионов РФ и зарубежья.
G.V. KUZNETSOVA, Engineer, (Kuznetzowa.gal@yandex.ru), G.Kh. GAYNUTDINOVA, Student Kazan State University of Architecture and Engineering (1, Zelenaya Street, 420043, Kazan, Russian Federation)

Effect of Sand Fineness on Selection of a Lime Binder Type

Replacement of old obsolete presses at silicate factories for foreign equipment intended for the use of sand mixes of a rational composition on the one hand, and diversity of sands used by silicate factories from the other hand, raise the problem of the possibility to simplify the preparation technology of a binder and transfer to the use of clear ready fine lime for producing the silicate brick. The study of effect of sand fineness on the selection of a lime binder type was conducted. The clear lime binder and ground lime with addition of sand – a lime-silica binder (LSB) were considered. Results of raw, autoclaved strength and density of pressed samples of mixes prepared with sands of 0.1–2.6 fineness modulus with the clear lime of 70 and 80% of activity comparing with the samples of the mix with the lime-silica binder are presented. The proposed conclusions give recommendations on priority when selecting the binder depending on the sand fineness.

Keywords: silicate brick, sand, lime, lime-silica binder, silicate mass, strength.

For citation: Kuznetsova G.V., Gaynutdinova G.Kh. Effect of sand fineness on selection of a lime binder type. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 33–37. (In Russian).

References
1. Kornev M.V. Actualized Edition of GOST 379. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 4. (In Russian).
2. Sulima-Grudzinsky A.V. Some Actual Problems in the Field of Equipment for Silicate Products Manufacture. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 53–62. (In Russian).
3. Kuznetsova G.V., Morozova N.N. Problems of Replacement of Traditional Technology of Silicate Brick with Preparation of a Lime- Siliceous Binder by Direct Technology. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 14–17. (In Russian).
4. Kuznetsova G.V., Sannikova V.I. Influence of Hydrothermal Treatment on Quality of Colored Silicate Brick. Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 36–38. (In Russian).
5. Khavkin L.M. Tekhnologiya silikatnogo kirpicha [Technology of a silicate brick]. Moscow: Ekolit. 2011. 384 p.
6. Sagdatullin D.G., Morozova N.N., Sabirov I.R. Influence of a type of chemical additives on processing behavior of composition plaster knitting. Ecology and new technologies in structural materials science: International collection of scientific works. Novosibirsk. 2010, pp. 12–15. (In Russian).
7. Kuznetsova G.V. Method for Pressing of Silicate Brick and Method for Defining Its Raw Strength. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 50–53. (In Russian).
8. Kuznetsova G.V. Granulometric Composition of Fine- Disperse Ash Waste and Its Influence on Properties of Pressed Products Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 51–56. (In Russian).
9. Barantseva E.A., Mizonov V.E., Khokhlova Yu.V. Protsessy smeshivaniya sypuchikh materialov: modelirovanie, optimizatsiya, raschet [Processes of interfusing of loose materials: model operation, optimization, calculation]. Ivanovo: GOUVPO «Ivanovskiy gosudarstvenny energeticheskiy universitet im. V.I. Lenina». 2008. 116 p.
M.V. KORNEV1, Candidate of Sciences (Engineering) (kornev.mv1979@yandex.ru); A.V. MAKAROV2, Candidate of Sciences (Engineering), I.N. TIKHOMIROVA2, Candidate of Sciences (Engineering), M.A. KARPENKO2, Bachelor

1 NP «Association of Manufactures of Silicate Products» (111, Lenina Avenue, Dzerzhinsk, 606000, Nizhny Novgorod Oblast, Russian Federation)
2 D.I. Mendeleev University of Chemical Technology of Russia (9, Miusskaya Square, 125047, Moscow, Russian Federation) Corrosion of Silicate Materials

At one of the construction projects after severe frosts there was the destruction of silicate bricks of the technical storey. To clarify the causes, the frost resistance was determined not only according to GOST 7025–91 but also at extremely low temperature (-40 and -52°C). Research in the structure and chemical composition of samples from the construction site was also conducted by the methods of differential-thermal (DTA), X-ray phase (XPA) and X-ray fluorescence element (XFA) analyses. To clarify the microstructure of samples the scanning electronic microscopy (SEM) was also made. When studying samples with the help of SEM, it is established that in the completely destructed sample there was a thin porous structure composed of short plates which were partially crystallized out of the amorphous matrix. At this, the structure of the stone not subjected to the impact of salts is analogous to the initial one. It is established that the cause of corrosion was the use of chemical reagents for removing the icing. It is concluded that such impact is unacceptable for any concretes.

Keywords: silicate materials, frost resistance, corrosion, ice-melting reagents.

For citation: Kornev M.V., Makarov A.V., Tikhomirova I.N., Karpenko M.A. Corrosion of silicate materials. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 38–40. (In Russian).

References
1. Kaftaeva M.V., Rakhimbaev I.SH. To a question of phase composition of hydrosilicate binding autoclave aerocrete. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovaniy. 2013. No. 10, pp. 370–372. (In Russian).
2. Stupen’ N.S., Lukashevich M.V. Processes of corrosion in a cement stone under the influence of a sulfate-chloride severe atmosphere. Vesnik Brestskagauniversiteta. 2008. No. 2, pp. 62–72. (In Russian).
3. Fedosov S.V., Akulova M.V., Potemkina O.V., Emelin V.Yu., Belyakova N.A. Research of change of phase composition of foam concrete with addition of a liquid silica glass and cullet by a thermographic method. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2013. No. 5, pp. 173–180. (In Russian).
4. Anvarov B.R., Latypova T.V., Latypov V.M., Kramar L.Ya. To a question of the mechanism of damage of reinforced concrete at lixiviation corrosion. Izvestiya vuzov. Stroitel’stvo. 2015. No. 2, pp. 12–26. (In Russian).
5. Lebedeva K.Yu., Saltanova Yu.V., Pakhomovskiy A.N., Korzun N.L. Researches of aggressive activity of salt of JSC Tyretskiy solerudnik on cement concrete. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2015. No. 1, pp. 95–105. (In Russian).
A.V. NESTEROV, Candidate of Sciences (Engineering), General Director (anest126@mail.ru) OOO «KIANIT» (1, Yuri Gagarin Avenue, 196105, Saint-Petersburg, Russian Federation)

Automation of Shaft Kilns for Producing Lime Automatic systems of the control over the technological process of limestone burning in shaft kilns (ASCTP SK) operating with gas fuel are considered. A general scheme of the ASCTP kiln is presented; main measuring devices used for the control over burning are listed. The safety systems when operating with gas devices that are installed on kilns are considered. New technical solutions which make it possible to improve the controllability of the kiln, to monitor and prevent emergency situation when limestone burning in the shaft kilns with the help of ASCTP are also considered. Issues of the correct operation of kilns and selection of optimal burning conditions are touched. Practical results of the use of ASCTP SK, which are realized at lime and silicate factories of Russia, are given.

Keywords: automated systems of control over technological process, automation, measuring devices, lime, limestone, shaft kiln.

For citation: Nesterov A.V. Automation of shaft kilns for producing lime. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 41–47. (In Russian).

References
1. Monastyrev A.V. Proizvodstvo izvesti [Production of lime]. Moscow: Vysshaya shkola. 1971. 272 p.
2. Klyuev A.S., Glazov B.V., Dubrovskiy A.H., Klyuev A.A. Proektirovanie sistem avtomatizatsii tekhnologicheskikh protsessov [Projection of systems of automation of technological processes]. Moscow: Energoatomizdat. 1990. 464 p.
3. The systems of automatic control on the basis of program logical controllers. Shnaider Elektrik. 2008. Issue 16. 81 p.
4. Monastyrev A.V., Galiakhmetov R.F. Pechi dlya proizvodstva izvesti [Kilns for production of lime]. Voronezh: Istoki. 2011. 392 p.
5. Nesterov A.N., Datukashvili D.O. Production of highcalcium lime in Russia. Stroitel’nye Materialy [Construction materials]. 2017. No. 3, pp. 52–59. (In Russian).
6. Nesterov A.V., Batyzhev D.Z. A New Life of Shaft Kilns. Stroitel’nye Materialy [Construction materials]. 2015. No. 3, pp. 49–52. (In Russian).
S.V. DUGUEV, Candidate of Sciences (Engineering), V.B. IVANOVA, Candidate of Sciences (Engineering), K.Zh. SATVALDINOV, Technologist OOO «Bi.El.Spectr» (10, Erino village, Ryazanovskoye Settlement, 142102, Moscow, Russian Federation)

Nomenclature and Dynamics of Sales of BES Pigments at Building Materials Market The world market of pigments is separated by types for inorganic, organic pigments etc. which further are segmented for subtypes. In 2015 the inorganic segment was accounted for the largest share of pigments. Main factors of the growth of inorganic color pigments consumption are the growth of urbanization, development of new fields of application of paints and coatings, building materials and plastics. As expected, the market of pigments will mainly grow. This conclusion was made on the basis of a detailed analysis of industry of construction materials since 2005 and the dynamics of pigments sales.

Keywords: pigments, water soluble self-dispersing paints.

For citation: Duguev S.V., Ivanova V.B., Satvaldinov K.Zh. Nomenclature and dynamics of sales of bes pigments at building materials market. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 48–50. (In Russian).
References
1. Patent RF 2175338. Sposob polucheniya organomineral’nykh pigmentov [Way of receiving organomineralnykh of pigments]. Duguev S.V., Ivanova V.B. Declared 05.05.1999. Published 27.10.2001. (In Russian).
2. Patent RF 2147594. Sposob polucheniya poroshkoobraznoi kraski [Way of receiving powdery paint]. Duguev S.V., Ivanova V.B. Declared 25.11.1998. Published 10.04.2000. (In Russian).
S.V. FEDOSOV, Doctor of Sciences (Engineering), Academician of RAACS, V.E. RUMYANTSEVA, Doctor of Sciences (Engineering), Adviser of RAACS (varrym@gmail.com), I.V. KRASILNIKOV, Candidate of Sciences (Engineering) (korasb@mail.ru), S.A. LOGINOVA, Engineer Ivanovo State Polytechnical University (20, 8 Marta Street, Ivanovo, 153037, Russian Federation)

Study of Effect of Mass Transfer Processes on Reliability and Durability of Reinforced Concrete Structures Operating in Liquid Aggressive Media Capabilities of the developed physical-mathematical model of mass transfer in processes of the first type corrosion of cement blocks in the liquid-reservoir system in the presence of an internal source of mass in the solid phase are demonstrated. It is shown, as using the proposed model, it is possible to calculate profiles of concentrations of the free calcium hydroxide through the thickness of a concrete or reinforced concrete structure at any moment of time as well as to determine the content of solved calcium hydroxide in the liquid phase that, in the aggregate, makes it possible to monitor the process of mass transfer at the first type corrosion of concrete blocks. The conducted numerical experiment shows as similarity criteria (Fourier, Bio, Pomerantsev) influence on the intensity of the process of corrosion interaction of dynamics and kinetics within the wide range of parameters. In addition, the structural solution of a monolithic reinforced concrete reservoir for fire extinction is described. Results of the calculation of dimensionless concentrations of calcium hydroxide according to the thickness of the reservoir in the form of graphical dependences which make it possible to determine the service time of the tank are presented.

Keywords: cement block, reinforced concrete tank, mass transfer, corrosion, calcium hydroxide concentration, mathematical simulation, dynamics and kinetics of process.

For citation: Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Loginova S.A. Study of effect of mass transfer processes on reliability and durability of reinforced concrete structures operating in liquid aggressive media. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 52–57. (In Russian).

References
1. Moskvin V.M. Korroziya betona [Corrosion of concrete]. Moscow: Gosstroyizdat, 1952. 342 p.
2. Polak A.F. Mathematical model of the process of corrosion of concrete in liquid media. Beton i zhelezobeton. 1988. No. 3, pp. 30–31. (In Russian).
3. Gusev B.V., Faivusovich A.S. Fiziko-matematicheskaya model’ protsessov korrozii armatury zhelezobetonnykh konstruktsii v agressivnykh sredakh. Teoriya. [A physicomathematical model of processes corrosion of reinforcement for reinforced concrete structures in aggressive environments. Theory.] Moscow: Nauchnyi mir. 2011. 56 p.
4. Rozental’ N.K. A new set of rules for the protection of building structures from corrosion. Proceedings of the first German-Russian conference “Innovative concrete technology”. Moscow. MUCE. 2012, pp. 6–8. (In Russian).
5. Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Aksakovskaya L.N. Modeling of mass transfer in corrosion of concrete of the first type (the small values of the Fourier number. Stroitel’nye Materialy [Construction Materials]. 2007. No. 5, pp. 70–71. (In Russian).
6. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Kas’yanenko N.S. Theoretical and experimental studies of the processes to corrosions of the first type cement concrete with the availability of the internal source of the mass in the solid phase. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 44–47. (In Russian).
7. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Kas’yanenko N.S. Modeling of mass transfer in the corrosion processes of the first type of cement concrete in the «liquid—reservoir» system with the availability of the internal source of the mass in the solid phase. Vestnik grazhdanskikh inzhenerov. 2013. No. 2 (37), pp. 65–70. (In Russian).
8. Lykov A.V. Yavleniya perenosa v kapillyarno-poristykh telakh [Transport phenomena in capillary-porous bodies]. Moscow: Gostekhizdat. 1954. 296 p. (In Russian).
9. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V. Theoretical study of the influence of power internal source mass on process mass transfer in corrosion of the first kind of cement concrete. Academia. Arkhitektura i stroitel’stvo. 2014. No. 1, pp. 102–105. (In Russian).
10. Fedosov S.V., Akulova M.V., Koksharov S.A., Meteleva O.V. Theoretical fundamentals of heat and mass transfer in promising technologies of production of textile and construction materials industries. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2015. № 6 (360), pp. 170–175. (In Russian).
11. Matveeva N.Yu., Krasilnikov I.V., Peshcherova O.V., Matrunchik A.S. About structure of energy audit program in industry. Informatsionnaya sreda vuza. 2015. No. 1, pp. 436–443. (In Russian).
12. Aloyan R.M., Petrukhin A.B., Gruzintseva N.A. Trends and prospects of use of geotextiles in road construction. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2017. No. 2 (368), pp. 318–321. (In Russian).
13. Fedosov S.V. Teplomassoperenos v tekhnologicheskikh protsessakh stroitel’noi industrii [Heat and mass transfer in technological processes of the construction industry]. Ivanovo: IPK PresSto, 2010. 364 p. (In Russian).
S.S. KAPRIELOV, Doctor of Sciences (Engineering) (kaprielov@mail.ru), A.V. SHEINFELD, Doctor of Sciences (Engineering), G.S. KARDUMYAN, Candidate of Sciences(Engineering), I.A.CHILIN, Engineer NIIZHB named after A.A. Gvozdev, JSC Research Center of Construction (6, 2nd Institutskaya Street, 109428, Moscow, Russian Federation)

About Selection of Compositions of High-Quality Concretes with Organic-Mineral Modifiers

Features of the selection of compositions of high-quality concretes of B40–B100 classes on the basis of organic-mineral modifiers of MB type are considered. Rational fields of the use of modifiers of various grades for the provision of required characteristics of concrete mixes and concretes – fluidity, strength, and self-stressing – are shown. Dependences of the concrete strength on cement consumption, dozing of the modifier, and water-binder ratio are presented. Compositions of low-cement concretes with a low heat rise, high-strength and structural light concretes, self-compacting concretes, self-stressing concretes, concretes with low permeability and high frost resistance, which are used when constructing unique facilities of civil, industrial and transport construction, are also presented.

Keywords: high strength concrete, self-stressing concrete, self-compacting concrete mix, concrete with low heat rise, organic-mineral modifier.

For citation: Каприелов С.С., Шейнфельд А.В., Кардумян Г.С., Чилин И.А. About selection of compositions of high-quality concretes with organic-mineral modifiers. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 58–63. (In Russian).

References
1. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S. Novye modifitsirovannye betony [The new modified concrete]. Moscow: Tipografiya «Paradiz». 2010. 258 p.
2. Kaprielov S.S., Sheynfeld A.V., Ferdzhulyan A.G., Pakhomov A.V., Livshin M.Ya. Experience of use of high-strength concrete. Montazh i spetsial’nye raboty v stroitel’stve. 2002. No. 8, pp. 33–37. (In Russian).
3. Merkin V.E., Smolyansky V.M., Tsynkov V.M., Kaprielov S.S., Sheynfeld A.V., Pakhomov A.V. Optimization of compositions of concrete and technological parameters of production of blocks of an obdelka of the Lefortovo tunnel. Trudy TsNIIS. 2002. No. 209, pp. 24–44. (In Russian).
4. Kaprielov S.S., Travush V.I., Sheynfeld A.V., Karpenko N.I., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. The modified concrete of new generation in constructions of MMDTs “Moscow City”. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10, pp. 8–12. (In Russian).
5. Kapriyelov S.S., Sheynfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. New concrete and technologies in structures of tall buildings. Vysotnye zdaniya. 2007. No. 5, pp. 94–101. (In Russian).
6. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheynfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. The modified high-strength concrete of the classes B80 and B90 in monolithic designs.Stroitel’nye Materialy [Construction Materials]. 2008. No. 3, pp. 9–13. (In Russian).
7. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S. Unique concrete and experience of their realization in modern construction. Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 1, pp. 42–44. (In Russian).
8. Sheynfeld A.V. Organomineral modifiers as the factor increasing durability of reinforced concrete designs. Beton i zhelezobeton. 2014. No. 3, pp. 16–21. (In Russian).
9. Kaprielov S.S., Sheynfeld A.V., Al-Omais D., Zaytsev A.S. High-strength concrete in a structure of the bases of the tall building OKO complex in MMDTs “Moscow City”. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 3, pp. 53–57. (In Russian).
10. Kaprielov S.S., Sheinfeld A.V., Dondukov V.G. Cements and additives for producing high-strength concretes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 11, pp. 4–10. (In Russian).
11. Collepardi M. The New Concrete. Italy. Grafiche Tintoretto. 2006. 421 p.
12. Aitcin H.-C. High-Performance Concrete. London and New York: E & FN. 1998. 598 p.
A.M. SULEJMANOV1, Doctor of Sciences (Engineering); E.S. ZYKOVA2, Engineer; I.A. STAROVOJTOVA1, Candidate of Sciences (Engineering) (irina-starovoitova@yandex.ru); A.N. SEMJONOV2, Engineer
1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)
2 The Research and Development Company «Rekon», ООО (Build. 7, 100, Vosstaniya Street, Technopolis «Himgrad», 420095, Republic of Tatarstan, Russian Federation)

Modified Glue Binders for Systems of External Reinforcement of Building Structures Part 2. Physical and Mechanical Characteristics of Glue Results of the study of physical-mechanical characteristics of modified epoxy glues for the systems of external reinforcement of building structures are presented. It is established that the introduction of multi-layered carbon nanotubes within the range of 0.001–0.025 pts.wt. per 100 pts.wt. of the epoxy resin leads to a slight increase in strength and modulus of elasticity when compressing the cured compound. At this, the nano-modification leads to a significant increase in adhesion characteristics of compositions: shear strength (to steel) and tensile uniform strength (to steel and concrete) increase by 40% and more within the range of optimal concentrations of nano-particles. The nano-modification makes it possible to increase the modulus of elasticity of carbon fiber reinforced plastics produced on the basis of carbon fabric and glued binder when preserving the high tensile strength.

Keywords: systems of external reinforcement, strengthening of building structures, glued binders, epoxy compositions, modification, adhesion, strength, modulus of elasticity.

For citation: Sulejmanov A.M., Zykova E.S., Starovojtova I.A., Semjonov A.N. Modified glue binders for systems of external reinforcement of building structures Part 2. Physical and mechanical characteristics of glue. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 64–67. (In Russian).

References
1. Lobkovskiy S.A., Trineeva V.V., Kustov M.A., Oshchepkova M.Yu. Nanometric additives as a means of improving the performance characteristics of adhesive systems in the manufacture of products of special equipment. Klei. Germetiki. Tekhnologii. 2011. No. 8, pp. 11–14. (In Russian).
2. Sopotov R.I., Skakun D.A., Korotova A.I., Bornosuz N.V., Gorbunova I.Yu. A study of the effect of the method of introducing aluminum oxide nanoparticles on the impact and adhesion strength of an epoxyamine binder. Uspekhi v khimii i khimicheskoi tekhnologii. 2014. Vol. XXVIII. No. 3, pp. 74–76. (In Russian).
3. Shinkareva E.V., Statkevich P.I., Koshevar V.D., Leonovich S.N. Adhesive nanocomposite materials based on epoxy oligomers. Vesnik Grodzenskaga dzyarzhaўnaga universiteta imya Yanki Kupaly. Seryya 6. Tekhnika. 2013. No. 2, pp. 64–75. (In Russian).
4. Khozin V.G., Starovoitova I.A., Maisuradze N.V., Zykova E.S., Khalikova R.A., Korzhenko A.A., Trineeva V.V., Yakovlev G.I. Nanomodification of polymer binders for constructional composites. Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 4–11. (In Russian).
5. Bolshakov V.A., Solodilov V.I., Korokhin R.A., Kondrashov S.V., Merkulova Yu. I., D’yachkova T.P. Investigation of the crack resistance of polymer composite materials made by infusion using various concentrates based on modified CNT. Trudy VIAM. 2017. No. 7 (55), pp. 79–89. (In Russian).
6. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Physicomechanical properties ofnanocomposites with CNT (review). Trudy VIAM. 2016. No. 5 (41), pp. 61–83. (In Russian).
7. Solodilov V.I., Korokhin R.A., Gorbatkina Yu.A., Kuperman A.М. Organoplastics based on complex hybrid matrices that include polysulfone and carbon nanotubes as modifiers of epoxy resins. Khimicheskaya fizika. 2012. Vol. 31. No. 6, pp. 63–71. (In Russian).
8. Kingston C., Zepp R., Andrady A., Boverhof D., Fehir R., Hawkins D., Roberts J., Sayre P., Shelton B., Sultan Y., Vejins V., Wohlleben W. Release characteristics of selected carbon nanotube polymer composites. Carbon. 2014. Vol. 68, pp. 33–57. v9. Yesil S., Bayram G. Effect of carbon nanotube surface treatment on the morphology, electrical, and mechanical properties of the microfiber-reinforced polyethylene/ poly(ethylene terephthalate)/carbon nanotube composites. Journal of Applied Polymer Science. 2013. Vol. 127, pp. 982–991.
10. Starovoitova I.A., Semenov A.N., Zykova E.S., Khozin V.G., Suleimanov A.M. Modified adhesive binders for external reinforcement of building structures. Part 1. Requirements for adhesives. Technological characteristics. Stroitel’nye Materialy [Construction Materials]. 2017. No. 11, pp. 50–54. (In Russian).
M.Yu. DREBEZGOVA, Engineer Belgorod State Technological University named after V.G. Shukhov (46, Kostyukov Street, 308012, Belgorod, Russian Federation)

Rheological Properties of the System «Composite Gypsum Binder — Superplasticizer — Water» Results of the study of rheological characteristics of mixes on the basis of the composite gypsum binder (CGB), which includes gypsum binders of α-modification G-5BP (G-5) and β-modification GVVS-16 (G-16); Portland cement TSEM 1 42.5N, multi-component fine-dispersed mineral additives and a surface-active additive on the base of lingo-sulfates and modified polycarboxylates SikaPlast 2135, are presented. The improvement in viscoplastic properties is observed at the SP dosage of 0.3–0.5%, this makes it possible to reduce the point of fluidity almost to zero and reduce the effective viscosity by several times. Dosages of SP over the optimum level determine the influence on the strength of gypsum-cement stone accompanied by reduction in water demand of CGB and the average size of pores of the gypsum cement stone. At dosages of SP which are not over the optimal, a decisive influence on the strength of gypsum cement stone has its deflocculating action which is accompanied by the reduction in water demand of CGB and the average size of pores of gypsum cement stone. When increasing the dosage over the amount that causes the complete destruction of floccules of the initial suspension, the strength of gypsum cement stone is reduced due to blocking SP crystallization ties. The total effect depends on which of these factors prevails when introducing it.

Keywords: composite gypsum binder, superplasticizer, lignosulfonate, polycarboxylite, rheological properties.

For citation: Drebezgova M.Yu. Rheological properties of the system «composite gypsum binder – superplasticizer – water». Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 68–70. (In Russian).

References
1. Drebezgova M.Yu. Features of hydration composition plaster knitting in the presence of superplasticizer Sika Plast 2135. Vestnik BGTU im. V.G. Shukhova. 2017. No. 5, pp. 20–23. (In Russian).
2. Chernysheva N.V. The Use of Anthropogenic Raw Materials for Increase of Water Resistance of a Composite Gypsum Binder. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 53–56. (In Russian).
3. Belov V.V., Burianov A.F., Yakovlev G.I., Petropavlovskaya V.B., Fisher H.-B., Maeva I.S., Novichenkova T.B. Modifikatsiya struktury i svoistv stroitel’nykh kompozitov na osnove sul’fata kal’tsiya [Modification of structure and properties of structural composites on the basis of calcium sulfate]. Moscow: De Nova. 2012. 196 p.
4. Gordina A.F., Yakovlev G.I., Polyanskikh I.S., Kerene J., Fisher H.-B., Rakhimova N.R., Bur’yanov A.F. Gypsum Compositions with Complex Modifiers of Structure. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 90–95. (In Russian).
5. Skuyans, Yu.R., Chuguev A, S., Horometskiy V.G. Investigation of the rheological properties of gypsum mixtures with additives of surfactants. Proceedings of the Latvian Academy of Agricultural Sciences. Building materials and structures for rural construction. 1984. Issue 209, pp. 19–23. (In Russian).
6. Uryev N.B. Fiziko-khimicheskie osnovy tekhnologii dispersnykh sistem i materialov [Physicochemical foundations of dispersed systems and materials technology]. Moscow: Khimiya. 1988. 256 p.
7. Uryev N.B. Dynamics of structured disperse systems. Kolloidnyi zhurnal. 1998. Vol. No. 5, pp. 662–683. (In Russian).
K.M. VORONIN, Candidate of Sciences (Engineering) (voronin.km@mail.ru), D.D. KHAMIDULINA, Candidate of Sciences (Engineering) (loza_mgn@mail.ru), S.A. NEKRASOVA Candidate of Sciences (Engineering), I.S. TRUBKIN, Engineer, Nosov Magnitogorsk State Technical University (38, Lenin Avenue, Magnitogorsk, 455000, Russian Federation)

Vibro-Pressed Elements of Paving with the Use of Steelmaking Slags The negative impact of waste storage of metallurgical enterprises on the ecological situation in the city of Magnitogorsk is covered in the article. Reasons for the rare use of sand from dumped steel making slag as a fine filler for concretes which is determined by their aptitude for spontaneous destruction (decay) are considered. It is revealed that particles of size less than 0.16 mm are the most dangerous, other sand fractions are stable to the decay. The efficient use of steel making slag of 2.5–0.16 mm fractions in place of scarce river sand is proposed. It is shown that the use of open-furnace slag sand in vibro-pressed fine concretes is the most preferable due to the improvement of the adhesion strength of cement stone with the filler. This makes it possible to obtain the pavement elements with operational characteristics which are not inferior to fine vibro-pressed concrete with river sand.

Keywords: fine concrete, slag sand, vibro-pressing, production waste, ecology.

For citation: Voronin K.M., Khamidulina D.D., Nekrasova S.A., Trubkin I.S. Vibro-pressed elements of paving with the use of steelmaking slags. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 71–73. (In Russian).

References
1. Majorova T.V., Ponomareva O.S. Technique of assessment of economic assessment of efficiency of ecological management of the enterprises of metallurgical branch. Vestnik MGU. 2015. No. 4, pp. 112–116 (In Russian).
2. Cherchincev V.D., Volkova E.A., Serova A.A., Romanova E.Ju. Assessment of the ecological state of the Magnitogorsk reservoir and the dynamics of changes in the main indicators of its pollution. Vesnik MGTU. 2014. No. 3, pp. 63–66. (In Russian).
3. Oreshkin D.V. Environmental problems of complex development of a subsoil at large-scale utilization technogenic mineral resources and waste in production of construction materials. Stroitel’nye Materialy [Construction Materials]. 2017. No. 8. pp. 55–63 (In Russian).
4. Yushkov B.S., Kalinina E.V., Glushankova I.S. Estimation of ecological danger of building materials on the basis of blast-furnace metallurgical slags. Ekologiya i promyshlennost’ Rossii. 2010. No. 8, pp. 38–40. (In Russian).
5. Telichenko V.I. From the principles of sustainable development to “green technologies”. Vestnik MGSU. 2016. No. 11, pp. 5–6. (In Russian).
6. Telichenko V.I. From ecological and green construction to ecological safety of construction. Promyshlennoe i grazhdanskoe stroitel’stvo. 2011. No. 2, pp. 47–51. (In Russian).
7. Benuzh A.A., Koligin M.A. The analysis of the concept of “green” construction as mechanism on ensuring ecological safety of construction activity. Vestnik MGSU. 2012. No. 12, pp. 161–165 (In Russian).
8. Remizov A.N., O.M. Ladygina Stimulating the «green» construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 3, pp. 35–38. (In Russian).
9. Shishkin V.I. Tekhnologiya stroitel’nykh izdelii iz mestnogo syr’ya i tekhnogennykh otkhodov [The technology of building products from local raw materials and industrial waste]. Magnitogorsk: MGTU im. G.I. Nosova. 2005. 45 p.
10. Bоzhenov P.I. Kompleksnoe ispol’zovanie mineral’nogo syr’ya dlya proizvodstva stroitel’nykh materialov [Complex use of mineral raw materials for the production of building materials]. Moscow: Stroyizdat. 1963. 160 p.
Index of Articles Published in the Journal «Construction Materials»® in 2017..... 74
K.A. ARISKINA1, Director (kristina.ariskina.95@mail.ru); B.A. SERGEEV2, Laboratory Assistant; E.T. MUKHAMETOVA1, Laboratory Assistant; R.R. MUHAMETZYANOV2, Laboratory Assistant; A.M. SALAHOV 2,3, Candidate of Sciences (Engineering); A.I. GUMAROV2, Engineer; A.G. NIKOLAEV4, Candidate of Sciences (Geologo-mineralogical)
1 University spin-off «Clinker ceramics of KFU» (16A, Kremlyovskaya Steet, 420008, Kazan, Russian Federation)
2 Kazan Federal University. Institute of Physics (16A, Kremlyovskaya Steet, 420008, Kazan, Russian Federation)
3 OAO «Alekseevskaya Keramika» (10, Kirpichnozavodskaya Street, town settlement Alexeyevskoe, Republic of Tatarstan, 422900, Russian Federation)
4 Kazan Federal University. Institute of Geology and Petroleum Technologies (4/5, Kremlyovskaya Steet, 420008, Kazan, Russian Federation) Investigation of the Structure and Color Characteristics of Glaze Coatings The characteristic of the chemical composition and structural features of the Italian glazed tiles of the Klinker Sire factory are presented. It is established that the structure of the surface layer differs significantly from the structure of the ceramic shard: there are no pores, no crystalline inclusions, smooth outer boundary. However there is no clearly defined boundary between shard and glaze. It is suggested that the effect of tile irradiation is due to the formation of thine metal film formed in the firing process in a reducing medium because some iron oxide loses oxygen. Photometric studies of the surface of samples of German and Portuguese glazed tiles.

Keywords: ceramics, tile, glaze, surface, color coordinates, X-ray photoelectron spectroscopy, energy-dispersive spectrum

For citation: Ariskina K.A., Sergeev B.A., Mukhametova E.T., Muhametzyanov R.R., Salahov A.M., Gumarov A.I. Investigation of the structure and color characteristics of glaze coatings. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 18–22. (In Russian).

Список литературы / References
1. Соколов Б.С. Теория силового сопротивления ани зотропных материалов сжатию и ее практическое применение: Монография. М.: АСВ, 2011. 160 с.
1. Sokolov B.S. Teoriya silovogo soprotivleniya anizotropnykh materialov szhatiyu i ee prakticheskoe primenenie: monografiya [Theory of force resistance of anisotropic materials to compression and its practical application: monograph]. Moscow: ASV. 2011. 160 p.
2. Радченко С.Л., Радченко Ю.С., Орехова С.Е. Получение глазурных покрытий на основе отрабо танных ванадиевых катализаторов // Стекло и кера- мика. 2009. № 4. С. 29–31.
2. Radchenko S.L., Radchenko Y.S., Orekhova S.Е. Obtaining of glaze coatings on the basis of vanadium catalysts used. Steklo i keramika. 2009. No. 4, pp. 29–31. (In Russian).
3. Радченко С.Л., Радченко Ю.С. Исследование струк- туры ванадийсодержащих глазурных покрытий для керамических изделий // Стекло и керамика. 2016. № 7. С. 40–44.
3. Radchenko S.L., Radchenko Y.S. Investigation of the structure of vanadium containing glaze coatings for ceramic products. Steklo i keramika. 2016. No. 7, pp. 40–44. (In Russian).
4. Салахов А.М., Морозов В.П., Гумаров А.И., Арискина К.А., Валимухаметова А.Р., Лис О.Н., Пасынков М.В. Опыт поверхностной обработки ке- рамических материалов строительного назначения // Строительные материалы. 2017. № 4. С. 42–46.
4. Salakhov A.M., Morozov V.P., Gumarov A.I., Ariskina K.A., Valimukhametova A.R., Lis O.N., Pasynkov M.V. Experience of surface treatment of ceramic materials for construction purposes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 42–46. (In Russian).
5. Жерновая Н.Ф., Бурчакова Ю.В., Жерновой Ф.Е., Мирошников Е.В. Легкоплавкие нефриттованные глазури для строительной и художественной керами- ки // Стекло и керамика. 2013. № 3. С. 33–36.
5. Zhernovoy N.F., Burchakova Y.V., Zhernova F.E., Miroshnikov E.V. Light-melting jade-coated glazes for construction and art ceramics. Steklo i keramika. 2013. No. 3, pp. 33–36. (In Russian).
6. Сидельникова М.Б., Погребенков В.М. Керамические пигменты на основе природного и техногенного ми нерального сырья. Томск: Изд-во Томского политех нического университета, 2014. 262 с.
6. Sidelnikova M.B., Pogrebenkov V.M. Keramicheskie pigmenty na osnove prirodnogo i tekhnogennogo mineral’nogo syr’ya. [Ceramic pigments based on natural and technogenic mineral raw materials]. Tomsk: Publishing house of Tomsk Polytechnic University. 2014. 262 p.
7. Lia Z., Yangb Y., Penga C., . glaze // Journal of Ceramics International. 2017. Vol. 43, pp. 6597–6602.
8. Abouliatima Y., El Hafaneb Y., Smithb A. , Mesnaouic M., Chartierb T., Benhammoua A., Abourrichea A., Niboua L. Study of borosilicate glaze opacifcation by phosphates using Kubelka-Munk model // Journal of Ceramics International. 2017. Vol. 43, pp. 5862–5869.
9. Holakooei P., Ahmadi M., Volpe L., Vaccaro C. Early Opacifiers In The Glaze Industry Of First Millennium bc Persia: Persepolis And Tepe Rabat // Archaeometry. 2017. Vol. 59, pp. 205–394.
10. De Vito C., Medeghini L., Mignardi S., Coletti F., Contino A. Roman glazed inkwells from the “Nuovo Mercato di Testaccio” (Rome, Italy): Production technology // Journal of the European Ceramic Society. 2017. Vol. 37, pp. 1779–1788.
11. Suvaci E., Yildiz B. Roles of CaO, MgO and SiO2 on crystallization and microstructure development in diopside-based glass-ceramic glazes under industrial fastfiring condition // Journal of the Australian Ceramic Society. 2017. T. 53. P. 75–81.
12. Jean-Paul van Lith. La Ceramique Dictionnaire encyclopedique. Paris: Les editions de l’Amateur, 2000. 455 p.
13. Сентенс Б. Керамика: путеводитель по традицион- ным техникам мира. М.: Астрель, АСТ, 2005. 216 с.
13. Centens B. Keramika: putevoditel’ po traditsionnym tekhnikam mira [Ceramics: guide to traditional techniques of the world]. Moscow: Astrel, AST. 2005. 216 p.
14. Елисеев А.А., Лукашин А.В. Функциональные на- номатериалы / Под ред. Ю.Д. Третьякова. М.: Физ- матлит, 2010. 456 с.
14. Eliseev A.A., Lukashin A.V. Funktsional’nye nanomaterialy. Pod red. Yu.D.Tret’yakova [Functional nanomaterials. Ed. By Tretyakov Yu.D.] Moscow: Fizmatlit. 2010. 456 p.
15. Зубехин А.П., Яценко Н.Д., Голованова С.П. Теоре- тические основы белизны и окрашивания керамики и портландцемента. М.: ООО РИФ «Строймате- риалы», 2014. 152 с.
15. Zubehin A.P., Yatsenko N.D., Golovanova S.P. Teoreticheskie osnovy belezny i okrashivaniya keramiki i portlandtsementa [Theoretical bases are of no use and staining of ceramics and Portland cement]. Moscow: STROYMATERIALY. 2014. 152 p.
16. Бак П. Как работает природа: Теория самоорганизо- ванной критичности / Пер. с англ., вступ. сл. Г.Г. Малинецкого. М.: Либроком, 2015. 276 с.
16. Buck P. Kak rabotaet priroda: Teoriya samoorganizovannoi kritichnosti [How nature works: Theory of self-organized criticality]. Moscow: Librocom, 2015.
СИЛИЛИКАТэкс KERAMTEX konkurs statey elibrary interConPan_2018 vselug НОПС cimprogetti