Sitemap

Stroitel`nye Materialy №3

Table of contents

S.N. LEONOVICH1, Doctor of Sciences (Engineering) (SLeonovich@mail.ru); D.V. SVIRIDOV2, Doctor of Sciences (Chemistry) (info@bsu.by), G.L. SHCHUKIN 2, Candidate of Sciences (Chemistry), A.L. BELANOVICH2 , Candidate of Sciences (Chemistry), S.A. KARPUSHENKOV 2, Candidate of Sciences (Chemistry), V.P. SAVENKO2 , Senior Staff Scientist
1 Belarusian National Technical University (65, Nezavisimosti Avenue, Minsk, 220013, Belarus)
2 Belarusian State University (4, Nezavisimosti Avenue, Minsk, 220030, Belarus)

Concrete Shrinkage Compensation The prospectivity of obtaining low shrinkage foam concrete of 200–400 kg/m3 density from cement mix containing dehydrated sodium citrate and expansive sulfoaluminate modifier ESM has been established. The effect of shrinkage compensation reveals itself due to the synthesis under conditions of the foam-cement structure of low-basic hydrosilicates which are overgrown with jellylike materials generated as a result of interaction of cement components, ESM additive and sodium citrate with the formation of a new block structure which resists to shrinkage effects in the process of transition of the foam-cement frame of foam concrete to the elastic state. Such factors as water migration under the impact of the temperature gradient, which leads to destructive effects, moist shrinkage, swelling of pore walls under steam condensation etc., resist to the progression of formation of hardening foam concrete structure. Defining destructive processes in the production of foam concrete are heat- and mass transfer in humid porous solids and stresses caused by temperature expansion of the material. To obtain the uniform distribution of heat flows in the course of drying of foam concrete massive, it is necessary to achieve the simultaneous heating of its volume. This can be realized with the help of microwave radiation which ensures the uniform drying without shrinkage effects and noticeable cracks.

Keywords: foam concrete, cement, foam mass, shrinkage, sodium citrate.

References
1. Batrakov V.G. Modificirovannie betoni, teoriya i prakti ka [The modified concrete, the theory and practice]. Moscow: Thehnoproect. 1998. 768 p.
2. Krivitskii M.Ya., Levin N.I., Makarichev V.V. Yacheistye betony (tekhnologiya, svoistva i konstruktsii) [Cellular concrete (technology, properties and structure)]. Moscow: Stroiizdat. 1972. 137 p.
3. Ruzhinsky S.R., Portik A.A., Savinih A.V. Vse o penob etone [In total about foam concrete]. St. Petersburg: ООО «Story Beton». 2006. 630 p.
4. Leonovich S.N. Sviridov D.V., Belanovich A.L., Shchu kin G.L., Savenko V.P., Karpushenkov S.A. Prolongation of working life of mortar mixes. Stroitel’nye Materialy [Const ruction Materials]. 2012. No. 10, pp. 74–77. (In Russian).
5. Patent 18077 BY. Sposob polucheniya uskoritelya tverdeni ya dlya betonov i stroitel’nykh rastvorov [Method of ob taining the hardener for the concretes and the mortars]. Savenko V.P., Shchukin G.L., Leonovich S.N. ets. Published. B.I. № 2. 2012.
6. Chindaprasirt P., Rattanasak U. Shrinkage behavior of structural foam lightweight concrete containing glycolNo. 2, pp. 723–727.
7. Sakharov G.L. Complex assessment of crack resistance of cellular concrete. Beton i zhelezobeton. 1990. No. 10, pp. 39–41. (In Russian).
8. Kharkhardin, A.N. Structural topology of foam concrete. Izvestiya vuzov. Stroitel’stvo. 2005. No. 2, pp. 18–26. (In Russian).
9. Mechai A.A., Baranovskaya E.I. Formation of composi tion and structure of products hydrosilicate hardening in the presence of sulfomineral additives. Tsement i ego prim enenie. 2010. No. 5, pp. 128–133. (In Russian).
10. Protko N.S., Mechay A.A. Expanding sulfoaluminate modifier for compensating the shrinkage strain of con cretes and solutions. The problems of contemporary con crete and reinforced concrete: International Symposium. Part 2. Minsk. 2007, pp. 255–271.
11. Dvorkin L.I., Dvorkin O.L. Stroitel’noe materialovede nie [Construction materials science]. Moscow: Infra Inzheneriya. 2013. 832 p.
12. Stark J. Recent advances in the field of cement hydration and microstructure analysis. Cement and Concrete re search. 2011. Vol. 41. No. 7, pp. 666–678.
13. Khudyakov A.I., Kiselev D.A.. Management of structure and quality of foam concrete. Proektirovanie i stroitel’stvo Sibiri. 2009. No. 4, pp. 29. (In Russian).
14. Mamontov A.V., Nefedov V.N., Nazarov I.V. ets. Mikrovolnovye tekhnologii: monografiya [Microwave technologies. Monograph]. Moscow: GNU of NII (Scientific Research Institute) PMT. 2008. 308 p.

S.V. FEDOSOV, Doctor of Sciences (Engineering), Academician of RAACS (fedosovacademic53@mail.ru), V.E. RUMYANTSEVA, Doctor of Sciences (Engineering), Adviser of RAACS (varrym@gmail.com), V.A. KHRUNOV, Candidate of Sciences (Engineering) (hrunovkss@gmail.com), M.E. SHESTERKIN, Engineer (shesterkin86@mail.ru) Ivanovo State Polytechnical University (20, 8 Marta Street, Ivanovo,153037, Russian Federation)

On Some Problems of Security Technology and Durability of Buildings and Engineering Infrastructure On the basis of the classical and latest theoretical and experimental studies, efficient recommendations on preventing the destruction of building structures due to corrosion are pro- posed. The mathematical simulation of the corrosion mass-transfer in the course of corrosion of cement concretes of the first type, which occurs in the concrete under the impact of water with low hardness when components of the cement stone are dissolved, washed away, and carried away by the moving aqueous media, has been carried out. The boundary prob- lem of mass conductivity in dimensional and non-dimensional variables is presented. The final solution of the problem using the method of Laplace at low values of Fourier number for mass exchange, as well as its practical application when inspecting the building structures of the water reservoir for fire fighting is presented.

Keywords: corrosion, cement concrete, liquid water environment, diffusion, mass transfer, safety, durability, Henry number

References
1. Moskvin V.M. Korroziya betona [Corrosion of concrete]. Moscow: Strojizdat. 1952. 342 p.
2. Fedosov S.V., Aloyan R.M., Ibragimov A.M., Gnedina L.Yu., Aksakovskaya L.N. Promerzanie vlazhnyh grun- tov, osnovanij i fundamentov [Freezing wet soils, base- ments and foundations]. Moscow: ASV. 2005. 277 p.
3. Fedosov S.V., Rumyantceva V.E., Fedosova N.L., Smel’cov V.L. Modeling of mass transfer processes in liquid corrosion of the concrete of the first kind. Stroitel’nye Materialy [Construction Materials]. 2005. No. 7, pp. 60–62. (In Russian).
4. Fedosov S.V., Rumyantceva V.E., Hrunov V.A., Aksakovskaya L.N. Modeling of mass transfer in the pro- cesses of corrosion of the concrete of the first kind (small values of the number of Fourier). Stroitel’nye Materialy [Construction Materials]. 2007. No. 5, pp. 70–71. (In Russian).
5. Fedosov S.V., Rumyantceva V.E., Hrunov V.A., Kas’yanenko N.S., Smel’cov V.L. Prediction of struc tural durability with the positions of the calculated and experimental investigations of the processes of corrosion of concrete. Vestnik Volgogradskogo GASU. 2009. No. 14 (33), pp. 117–122. (In Russian).
6. Fedosov S.V., Rumyantceva V.E., Hrunov V.A., Shester kin M.E. The issues of predicting the durability of build ing constructions. Stroitel’stvo i rekonstrukciya. 2011. No. 5 (37), pp. 63–69. (In Russian).
7. Fedosov S.V., Rumyantceva V.E., Kas’yanenko N.S., Hrunov V.A. Mass transfer in the system «concrete – ag gressive liquid phase», complicated chemical reaction at the interface. Vestnik otdeleniya stroitel’nyh nauk [Bulletin of the Department of construction Sciences]. 2011. No. 15, pp. 216–219. (In Russian).
8. Fedosova N.L., Rumyantceva V.E., Shesterkin M.E., Manohina Yu.V. About some features of the modeling of mass transfer in the processes of corrosion of the first type of concrete in a closed system «container-fluid». Stroitel’stvo i rekonstrukciya. 2013. No. 1 (45), pp. 86–94. (In Russian).
9. Kayumov R.A., Fedosov S.V., Rumyantceva V.E., Hrunov V.A., Manohina Yu.V., Krasil’nikov I.V. Mathematical modeling of corrosion mass transfer in heterogeneous systems «liquid corrosive environment – cement concrete». Special cases and solutions. Izvestiya KGASU. 2013. No. 4 (26), pp. 343–348. (In Russian).

G.I. BERDOV1, Doctor of Sciences (Engineering); M.A. ELESIN2, Candidate of Sciences (Engineering) (ema0674@mail.ru), E.V. UMNOVA 2, Engineer (elena00@kanal7.ru) 1Novosibirsk State University of Architecture and Civil Engineering (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation) 2Norilsk Industrial Institute (7, 50 Let Oktyabrya, Norilsk, 663310, Russian Federation)

High-Strength Concrete on the Base of Lime-Sulfur Sealing Compound The use of the lime-sulfur sealing compound obtained by means of dissolving the sulfur in the lime suspension heated up to 95°C at mechanical blending in the course of heavy con- crete manufacturing ensures the improvement of its strength under compression by 30–50%. In doing this, up to 50% of Portland cement in the structure of the binder can be replaced with disperse anthropogenic additives (metallurgical ferriferous slag or ferriferous cinders).

Keywords: concrete, lime-sulfur sealing compound, resource saving, power saving, slag

References
1. Vovk A.I. Hydration of three-calcic C3A aluminate and the mixes C3A - plaster at presence surfactant: adsorption or superficial phase formation? Kolloidnyi zhurnal. 2000. Vol. 62. No. 1, pp. 31–38. (In Russian).
2. Guvalov A.A. Management of structurization of cement systems with multifunctional super softeners. Tekhnika i tekhnologiya silikatov. 2011. Vol. 18. No. 3, pp. 24–27. (In Russian).
3. Kalashnikov V.I., Moroz M.N., Tarakanov O.V., Kalashnikov D.V., Suzdaltsev O.V. New ideas about ac tion mechanism of superplasticizers grinded jointly with cement or mineral rocks. Stroitel’nye Materialy [Construction Materials]. 2014. No. 9, pp. 70–75. (In Russian).
4. Bazhenov Yu.M., Dem’yanova V.S., Kalashnikov V.I. Modifitsirovannye vysokokachestvennye betony [The modified high-quality concrete] . Moscow: ASV. 2006. 368 p.
5. Malek K., Coppens M.O. Knudsen self and Fickian dif fusion in rough nanoporous media. Journal of Chemical Phуsics. 2003. Vol. 5. Issue 119, pp. 2801–2811.
6. Kalashnikov V.I., Gulyaeva E.V., Valiev D.M. Influence of a look super and hyper softeners on rheological-tech nology properties of cement and mineral suspensions, powder mixes and strength properties of concrete. Izvestiya vuzov. Stroitel’stvo. 2011. No. 12, pp. 40–45. (In Russian).
7. Klassen V.K., Ermolenko E.P., Novoselov A.G. Interaction in systems a calcium carbonate – alkaline chlorides. Tekhnika i tekhnologiya silikatov. 2009. Vol. 16. No. 4, pp. 7–16. (In Russian).
8. Spitatos N., Раgе М., Mailvanam N. et al. Superplasticizers for concrete: fundamentals, technology and practice. Quebec–Canada. 2006. 322 p.
9. Berdov G. I., Il’ina L. V. Interaction of silicate brick min erals with water solutions of electrolytes. Izvestiya vuzov. Stroitel’stvo. 2012. No. 10, pp. 3–9. (In Russian).
10. Mashkin N.A. Elesin M.A., Nizamutdinov A.R., Botvin’eva I.P. Hydrochemical modifying of concrete mixes dilution in lime and sulfur liquor. Izvestiya vuzov. Stroitel’stvo. 2013. No. 6, pp. 16–21. (In Russian).

V.I. KALASHNIKOV, Doctor of Sciences (Engineering), O.V. SUZDALTSEV, Engineer, M.N. MOROZ, Candidate of Sciences (Engineering) (mn.moroz80@gmail.com), V.V. PAUSK, Engineer Penza State University of Architecture and Civil Engineering (28, G. Titova Street, Penza, 440028, Russian Federation)

Frost Resistance of Coloured Architectural-Decorative Powder-Activated Sand Concretes *
Results of the assessment of frost resistance of self-compacting, colour, ultra-high-strength, powder-activated, carbonate fine concrete of 140–150 MPa strength produced without microsilica are presented. It is significant that the lime disperse filler, fine lime sand, and lime sand-filler, which are contained in the high-strength carbonate concrete, are produced from the waste of limestone crushing and in the course of testing for frost resistance the concrete withstands one thousand cycles of alternating freezing-thawing practically without weight loss and with the decrease in strength by 2%.

Keywords: ultra-high-strength concretes, self-compacting concretes, architectural-decorative concrete, finishing materials, durability.

References
. 1 Daniel Pfeffer Seraphim. The use of glass fiber reinforced concrete in structures with high architectural require ments. SPI. Mezhdunarodnoe betonnoe proizvodstvo. 2012. No. 2, рр. 130–134. (In Russian).
2. Flowers made of concrete. The new museum building in Vorarlberg Bregenz. SPI. Mezhdunarodnoe betonnoe proizvodstvo. 2013. No. 5, рр. 24–26. (In Russian).
3. Kuntcevich O.V. Betony vysokoj morozostojkosti dlja sooruzhenij Krajnego Severa [Concrete structures for high frost resistance of the Far North]. Leningrad: Stroiizdat. 1983. 131 p.
4. Kalashnikov V.I., Suzdaltsev O.V., Dryanin R.A., Sehposyan G.P. The role of dispersed and fine-grained fillers in concrete new generation. Izvestija vuzov. Stroitel’stvo. 2014. No. 7, рр. 11–21. (In Russian).
5. Kalashnikov V., Kornienko P., Gorshkova L., Gakshte ter G., Sarsenbayeva A. Development of compositions of self-compacting fine-grained refractoty concrete. Journal of Advanced Concrete Technology. 2014. Vol. 12, pp. 299–309.
6. Moroz M.N., Kalashnikov V.I., Petukhov A.V. Frost re sistance hydrophobized concrete. Molodoj uchenyj. 2014. No. 19, pp. 222–225.
7. Khozin V.G., Khokhryakov O.V., Sibgatullin I.R., Gizzatullin A.R., Kharchenko I.J. Carbonate Cements of Low Water-Need is a Green Alternative for Cement Industry of Russia. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 76–83. (In Russian).
New GOST of Gypsum Plasterboard KNAUF (Information)
Permanent Formwork “PLASTBAU-3” . Prospects of Low-Rise Monolithic Housing Construction (Information)

V.V. BELOV, Doctor of Sciences (Engineering), S. L. SUBBOTIN, Doctor of Sciences (Engineering), P. V. KULYAEV, Engineer (p.kuliaev@yandex.ru) Tver State Technical University (22, Afanasiy Nikitin Еmbankment, Tver, 170026, Russian Federation)

Strength and Strain Properties of Concrete with Carbonate Microfillers Knowledge of the stress-strain state distribution in concrete with limestone fines under compression is crucial for the design of certain kinds of reinforced concrete members, such as shells and membranes. The study focuses on strain characteristics of concrete with limestone fines, such as short-term and long-term creep and shrinkage, in elastic and plastic areas of their development, with comparison to ordinary concretes. The article enlightens such stress properties, as crack resistance and cubic strength. The comparison of theoretical figures with test data is drawn on the basis of phenomenological approach to solution of similar tasks.

Keywords: concrete, limestone microfillers, creep and shrinkage strains, creep modulus, creep characteristic.

Reference
1. Tarun R. Naik, FethullahCanpolat, Yoon-moon Chun. Limestone powder use in cement and concrete. Report No. CBU-2003-31 REP-525 // Department of Civil Engineering and Mechanics College of Engineering and Applied Science. The University Of Wisconsin – Milwaukee. July. 2003.
2. Khozin V.G., Khokhryakov O.V., Sibgatullin I.R., Gizzatullin A.R., Kharchenko I.Ya. Carbonate cements of low water-need is a green alternative for cement industry of Russia. Stroite’nye Materialy [Construction Materials]. 2014. No. 5, pp. 76–82. (In Russian).
3. Berdov G.I., Ilyina L.V., Zyryanova V.N., Nikonen ko N.I., Mel'nikov A.V. Improving the properties of composite building materials by introduction of mineral micro fillers. Stroiprofi: Stroitel'nye Tehnologiii Betony. 2012. No. 2, pp. 26–30. (In Russian).
4. Plugin A.A., Kostyuk T.A., Saliya M.G. Bondaren ko D.A. Application of carbonate additives in cement compositions for waterproofing and restoration of buildings and structures. Collection of scientific papers of the institute of civil engineering and architecture MSUCE. 2012, pp. 224–227. (In Russian).
5. Chaid R., Jauberthie1 R. et Boukhaled A. Effet de l’ajout calcairesur la durabilite des betons. Lebanese Science Journal. 2010. Vol. 11. No. 1.
6. Amlan K Sengupta, Devdas Menon. Prestressed concrete structures. Indian Institute of technology. 2002.
7. Pieter Desnerck, Geert De Schutter, Luc Taerwe. Stress strain behavior of self-compacting concretes containing limestone fillers. Structural Concrete. 2012. Vol. 13. Issue 2, pp. 95–101.
8. Lesovik V. S., Belentsov Yu.A., Kuprina A.A. The use of provisions of geonik when designing structures for work under dynamic and seismic loads. Izvestiya vysshih uchebnyh zavedeniy. Stroitel'stvo. 2013. No. 2–3, pp. 121– 126. (In Russian).
9. Lesovik V.S. Ageeva M.S., Denisova Yu.V., Ivanov A.V. The use of composite binding for durability of concrete pavers. Vestnik Belgorodskogo gosudarstvennogo tehnologi cheskogo universitete im. V.G. Shuhova. 2011. No.4, pp. 52–54. (In Russian).
10. Lesovik V.S., Chulkova I.L. Upravlenie strukturo obrazovaniem stroitel'nyh kompozitov [Management structure formation building composites]. Omsk. SibADI. 2011. 459 p.
11. Belov, V.V., Smirnov M.A. Theoretical Foundations of optimization techniques size distribution of compositions for the manufacture of nonfired construction conglomerates. Vestnik otdeleniya stroitel'nyh nauk. RAACS. 2011. Vol. 15, pp 175–179. (In Russian).
12. Belov V.V., Smirnov M.A. New guidelines for determining the composition of high-quality concrete. Vestnik Tverskogo gosudarstvennogo tehnicheskogo universiteta. 2008. Vol. 13, pp. 341–346. (In Russian).
13. De Schutter G. Effect of limestone filler as mineral addition in self compacting concrete. 36 Conference on Our World in concrete & Structures. Singapore. October 14–16. 2011.

O.M. SMIRNOVA, Candidate of Sciences (Engineering) (smirnovaolgam@rambler.ru) Petersburg State Transport University of Emperor Alexander I (9, Moskovsky Avenue, 190031, Saint Petersburg, Russian Federation)

The Use of Mineral Micro-Filler for Increasing the Activity of Portland-Cement Research in the choice of consumption and dispersion of the quartz micro-filler with the purpose to increase the activity of Portland-cement after the low temperature steam treatment is presented. The efficiency of results obtained is the increase in the activity of Portland-cement and, consequently, in the strength of concrete after steam treatment with the isothermal concrete curing temperature of 40°C instead of the applied temperature of 80°C and the Portland-cement saving comparing with nominal compositions.

Keywords: portland cement, mineral filler, precast reinforced concrete, steaming treatment, temperature of steaming treatment.

References
1. Serenko A.F., Petrova T.M. Besproparochnaya tekh nologiya proizvodstva podrel’sovykh konstruktsii [Non-steaming technology of sleepers production] M.: Uchebno-metodicheskii tsentr po obrazovaniyu na zheleznodorozhnom transporte. 2012. 136 р. (In Russian).
2. Smirnova O.M. Requirements to granulometric compo sition of Portland cement for precast reinforced con crete production under low-heat steaming treatment. Tsement i ego primenenie. 2012. No. 2, рр. 205–207. (In Russian).
3. Jiong Hu, Zhi Ge, Kejin Wang. Influence of cement fine ness and water-to-cement ratio on mortar early-age heat of hydration and set times. Construction and Building Materials. 2014. V. 50, pp. 657–663.
4. Khuzin A.F., Gabidullin M.G., Rakhimov R.Z., Gabidullina A.N., Stoyanov O.V. Acceleration of cement composites hardening modified with additives and carbon nanotubes. Vse materialy. Entsiklopedicheskii spravochnik. 2013. No. 11, pp. 32–36. (In Russian).
5. Khuzin A.F., Gabidullin M.G., Badertdinov I.R., Rakhimov R.Z., Abramov F.P., Yumakulov R.E., Nizembaev A.Sh., Perepelitsa E.M. Integrated supple ments based on carbon nanotubes for high-strength con cretes. Izvestiya Kazanskogo gosudarstvennogo arkhitek turno-stroitel’nogo universiteta. 2013. No. 1, pp. 221–226. (In Russian).
6. Korobkova M.V., Ryabova A.A., Kharitonov A.M. Influence low-hard dispersed additives on impact strength of cement concrete. Estestvennye i tekhnicheskie nauki. 2014. No. 8 (76), pp. 154–156. (In Russian)

R.V. CHIZHOV1, Engineer (rastis-lav@yandex.ru), N.I. KOZHUKHOVA1, Candidate of Sciences (Engineering) , I.V. ZHERNOVSKY 1, Candidate of Sciences (Geology and Mineralogy), D.N. KOROTKIH2 , Candidate of Sciences (Engineering) (korotkih.dmitry@gmail.com) E.V. FOMINA 1, Candidate of Sciences (Engineering), M.I. KOZHUKHOVA1 , Candidate of Sciences (Engineering) (kozhuhovamarina@yandex.ru);
1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukov Street, Belgorod, 308012, Russian Federation)
2 Voronezh State University of Architecture and Сivil Engineering (84, 20-letija Oktjabrja Street, Voronezh, 394006, Russian Federation)

Phase Formation and Properties of Aluminum-Silicate Binders of Dehydration Type of Hardening with the Use of Perlite* Properties of the aluminum-silicate binder of dehydration type of hardening with the use of natural perlite have been studied. The interconnection of the influence of dispersion of perlite raw material and the molar ratio of oxides in the alkaline-activated binding system of Na2O and Al2O3 on the final performance characteristics of obtained alkaline-perlite composites has been established. When the degree of dispersion of perlite particles is low, to ensure higher strength characteristics of the stone the larger quantity of alkaline component is required than for fine perlite. It is revealed that the introduction of excess amount of alkali into the aluminum-silicate system leads to the retardation of structure formation processes in the hard- ening alkali-perlite matrix and, as a result, to reduced strength characteristics. Phase peculiarities of aluminum-silicate composites on the basis of perlite raw material, which are formed under impacts of various time and temperature parameters, have been studied.

Keywords: aluminum silicates, perlite, zeolite, alkali-activation, phase formation, geopolymers.

References
1. Lesovik V.S., Zhernovoy F.E., Glagolev E.S. Application of natural perlite in blended cements. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 84– 87. (In Russian).
2. Korinevsky E.V. PetroExplorer – a new computer pro gram for storage and calculation of chemical analysis for minerals and rocks. Proceeding of VI International school on Earth sciences named after L.L. Perchuk. Odessa. 2010, pp. 63–66. (In Russian)
3. Solovyov L.A. Includes Rietveld and Derivative Difference Minimization (DDM) methods. Journal of Applied Crystallography. 2004. Vol. 37, pp. 743–749.
4. Criado M. Fernandez-Jimenez A., de la Torre A.G., Aranda M.A.G., Palomo A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research. 2007. Vol. 37, pp. 671–679.
5. Petrova V.V. Nizkotemperatutnie vtorichnie mineralyi i ih rol v litogeneze [Low-temperature secondary minerals and its role in lithogenesys]. Мoscow: GEOS. 2005. 240 p.

L.I. KHUDYAKOVA, Candidate of Sciences (Engineering) (lkhud@binm.bscnet.ru), O.V. VOILOSHNIKOV, Candidate of Sciences (Engineering), I.Yu. KOTOVA, Candidate of Sciences (Chemistry) Baikal Institute of Nature Use, Siberian Branch of the Russian Academy of Sciences (6, Sakhyanova Street, Republic of Buryatia, Ulan-Ude, 670047, Russian Federation)

Influence of Mechanical Activation on Process of Formation and Properties of Composite Binding Materials * The possibility of increasing the quality of composite binders with the addition of magnesia-silicate rocks by means of mechanical activation of raw mixes is considered. It is established that the increase in the time of mechanical activation from one up to twenty minutes leads to the increase in the specific surface of the raw mix that promotes the increase in chemical activity of the surface layer and acceleration of solid-phase reactions with generation of silicates of diopside, monticellite, and mervinite types. The optimal time of mechanical activation (15 minutes), in which the hydrated system has the highest quantity of mixed hydro-silicates of calcium, magnesium and iron that leads to high physical-mechanical properties of bind- ing compositions, has been determined. It is established that after 15 minute grinding of the raw mix the ultimate strength of binding compositions when bending, after 28 days of nor- mal-humidity hardening, is equal to 20.2 MPa, under compression – to 66.7 MPa.

Keywords: mechanical activation, magnesia-silicate rocks, composite binders, dunite.

References
1. Fedorkin S.I., Makarova E.S. Mechanochemical activation of secondary raw materials - effective direction of improving the properties of building materials based on it. Stroitel'stvo i tekhnogennaya bezopasnost'. 2011. Vol. 36, pp. 67–72. (In Russian).
2. Zhernovsky I.V., Strokova V.V., Bondarenko A.I., Kozhukhova N.I., Sobolev K.G. Structural transforma tions of silica raw material in the course of mechanical activation. Stroiel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 56–58. (In Russian).
3. Tikhomirova I.N., Makarov A.V. Mechanism of phase formation and hardening of mechanically activated lime quartz mixes in the course of heat-humidity treatment. Stroiel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 44–49. (In Russian).
4. Gurevich B.I., Kalinkin A.M., Kalinkina E.V., Tyukavkina V.V. The influence of mechanical activation of nepheline concentrate on its binding properties in mixed cements. Zhurnal pricladnoi khimii. 2013. Vol. 86. Issue. 7, pp. 1030–1035. (In Russian).
5. Peschanskaya V.V., Makarova A.S., Golub I.V. Effect of mechanical activation on the curing process and the properties of refractory concrete. Tekhnologicheskii audit i rezervy proizvodstva. 2013. No. 1/2 (9), pp. 29–33. (In Russian).
6. Kosach A.F., Rashchupkina M.A., Gutareva N.A., Obadyanov A.V. The influence of the specific surface area of the particles of river sand on the physico-mechanical properties of fine-grained concrete. Vestnik Yugorskogo gosudarstvennogo universiteta. 2012. Vol. 2 (25), pp. 34–36. (In Russian).
7. Khudyakova L.I., Voiloshnikov O.V., Kotova I.Y. Mine waste as raw material for building materials. Vestnik DVO RAN. 2010. No. 1, pp. 81–84. (In Russian).
8. Khudyakova L.I., Timofeeva S.S. Development of technology for utilization of the host rocks of alkaline-ultramafic formations by the example of dunite Yoko-Dovyren array. Vestnik IrGTU. 2012. No. 4 (63), pp. 74–77. (In Russian).
9. Gerasimova L.G., Maslova M.V., Shchukina E.S. The role of mechanical activation in the preparation of mineral pigment-filler titanite. Zhurnal pricladnoi khimii. 2010. Vol. 83. No. 12, pp. 1953–1959. (In Russian).
10. Kozlova V.K., Ilievsky Yu.A., Karpova Yu.V. Produkty gidratacii kal'cievo-silikatnykh faz cementa i smeshannykh viazhushchikh veshchestv [Hydration products of calcium-silicate phases of cement and mixed binders]. Barnaul: AltGTU Publishing. 2005. 183 p
German Company LINGL at the Exhibition MosBuild 2015, One of the Most Important Exhibitions of This Year (Information)

A.V. NESTEROV1, Candidate of Sciences (Engineering), General Director (anest126@mail.ru); D.Z. BATYZHEV2, General Director
1 OOO “KIANIT” (1, Yuriya Gagarina Avenue, 196105 Saint Petersburg, Russian Federation)
2 OAO “Uglovsky Izvestkovyi Kombinat” (2, Sportivnay Street, Uglovka, Okulovsky District, Novgorodskaya Oblast, Russian Federation)

A New Life of Shaft Kilns The experience in reconstruction of kilns designed by GIPROSTROM and built in the 70-ies of XX century at OAO “Uglovsky Izvestkovyi Kombinat” is presented. Technical solutions of the modernization have been developed jointly by OOO “KIANIT” and Uglovsky Izvestkovyi Kombinat. The reconstruction makes it possible to produce the lime of the first and second grades with activity of 83–90% according to GOST 9179–77. In addition, it is possible to produce the slow-slaking lime for manufacturers of autoclaved concrete.

Keywords: lime, limestone, shaft counterflow kiln, console tuyere burner, central burner.

A.V. SULIMA-GRUDZINSKY, Chief Mechanic, Project Management Service (sulima@ao-gns.ru), OOO “UK ‘Glavnovosibirskstroy” (52a, 2nd Stantsionnaya Street, 630041, Novosibirsk, Russian Federation)

Some Actual Problems in the Field of Equipment for Silicate Products Manufacture The sphere of modern technique for regulation of a volumetric hydraulic drive, development of the conception of power-efficient hydraulic drives of press equipment for manufacturing the silicate brick are described; engineers who stand at the origins of this sphere formation are presented. Prospects of the domestic machine-building complex in the field of manufac- turing the basic technological equipment for silicate industry are assessed.

Keywords: silicate brick, hydraulic presses, hydraulic drives, variable frequency drive

References
1. Khavkin L.M. Tekhnologiya silikatnogo kirpicha [Technology of a silicate brick]. Moscow: Stroiizdat. 1982. 384 p.
2. Zeifman M.I. Izgotovlenie silikatnogo kirpicha i silikatnykh yacheistykh materialov [Production of a silicate brick and silicate cellular materials]. Moscow: Stroiizdat. 1990. 184 p.
3. Vetrov E.V. Automation of process of formation of a silicate brick on the basis of microcontroller control units the press equipment. Cand. Diss. (Engineering). Belgorod. 2007. 167 p. (In Russian).
4. Bashta T.M., Rudnev S.S., Nekrasov B.B., etc. Gidravlika, gidromashiny i gidroprivody [Hydraulics, hydrocars and hydraulic actuators]. Moscow: Mashinostroenie. 1982. 423 p.
5. Sveshnikov V.K. Energy saving in modern hydraulic actuators. RITM. 2011. No. 6, pp. 34-38 (In Russian).
6. Patent for useful model RF 53217. Ustroistvo dlya regulirovaniya skorosti pressovaniya gidravlicheskogo pressa [The device for regulation of speed of pressing of a hydraulic press]. Mirgorodskii V.V., Morozov K.P., Kislov V.A., Kalekin M.Yu. Declared 29.12.2005. Published 10.05.2006. (In Russian).
7. Kalekin M.Yu., Sulima-Grudzinskii A.V. New technical solutions in a design of modern press for production of fire- resistant products. Novye ogneupory. 2007. No. 5, pp. 32-34.
8. European patent specification EP 2000226. Improved press for extruding non-ferrous metal section members / Presezzi, Valerio; Proprietor: Presezzi Extrusion S.p.A. Priority 06.06.2007. Publication 10.12.2008.
9. Babakov N.A., Voronov A.A., Voronova A.A., etc. Teoriya avtomaticheskogo upravleniya [Theory of automatic control]. Мoscow: Vysshaya shkola. 1986. 367 p.
10. Sveshnikov V.K. Innovative hydraulics RITM. 2014. No. 4, pp. 70–76. (In Russian).
11. Galeev I.A. Hydraulic the press of VIKING SG-710 for production of a silicate brick and blocks. Stroitel'nyeMaterialy [Construction Materials]. 2010. No. 9, pp. 34-35. (InRussian).
12. Somov N.V. Problems of development of the Russian silicate industry. Stroitel'nyeMaterialy [Construction Materials]. 2013. No. 3, pp. 47–49. (InRussian).

V.A. BOBIN1, Doctor of Sciences (Engineering), A.V. BOBINA2, Engineer (annabobini@mail.ru)
1 Institute of Complex Exploitation of Mineral Resources of the Russian Academy of Sciences (4, Kryukovski Tupik, Moscow, 111020, Russian Federation)
2 Moscow mining institute of National University of Science and Technology MISiS (4, Leninskiy Avenue, 119049, Moscow)

Gyroscopic mill – new power effective equipment for unaccented destruction of solid materials The design and principle of operation of a gyroscopic mill, a new, not having analogues, power efficient equipment for non-impact destruction of solid materials, are described. Results of the laboratory testing of the experimental sample of the gyroscopic mill with the central loading of rock through the hollow shaft are presented. It is shown that for all types of tested rock with hardness in the range of 8 units according to the scale of professor M.M. Protodiakonov, the efficiency of the gyroscopic mill operation is over 306 kg/h./kw and specific effi- ciency is 62 kg/h./kw/t of the unit’s mass that 23 times and three orders of magnitude larger than the corresponding values of the traditional disk grinder.

Keywords: non-impact destruction of solid materials, gyroscopic mill

References
1. Trubetskoy K.N., Galchenko Y.P. Basics of mining. Moscow: Nedra, 2010, 264 p. (In Russian).
2. Chanturia V.A. and other. Nanochastitsy v protsessakh razrusheniya i vskritiya geomaterialov [Nanoparticles in the processes of disintegration and opening of geo materials] Moscow: IPKON RAS, 2006. 352 p. (In Russian).
3. Viktorov S.D., Kazakov N.N., Shlyapin A.C., Dobrynin I.A. Determination of particle size distribution on foto programma using a computer program. GIAB, Seharate issue. 2007. No. 8. pp. 169–173. (In Russian).
4. Kazakov S.V., Weisberg L.A., Lavrov B.P. Analysis one of the promising schemes of vibro-impact crusher. Obogaschenie rud. 2006, No. 3, pp. 41–43. (In Russian).
5. Bobin V.A., Voronyuk A.S., Lanyuk A.N. The idea of us ing gyroscopic forces as the physical basis of new energy - material-efficient technologies and mechanisms. GIAB. 2005. No. 3, pp. 290–293. (In Russian).
6. Pokamestov A.V., Bobina A.V. Century a New physical principle of the creation and regulation efforts abrasion due to the gyroscopic effect. GIAB, 2012, No. 3, рр. 29–31. (In Russian).
7. Bobin C.A., Chernegov Y.A. Gyroscopic mill. A techno- logical breakthrough in mining. Technologii mira. 2010. No. 6(24), pp. 25–27. (In Russian).
8. Bobin V.A., Pakamestov A.V., Bobina A.V., Lanyuk A.N. Gyroscopic shredder with Central loading of the breed. RF patent No. 2429912. 2011. Bull. No. 27. (In Russian).

V.V. BELOV, Doctor of Sciences (Engineering), I.V. OBRAZTSOV, Engineer (sunspire@list.ru) Tver State Technical University (22, Afanasiya Nikitina Embankment, 170026, Tver, Russian Federation)

The Use of Virtual Simulators for Employees of Industrial Laboratories Development, introduction and enhancement of information technologies (virtual laboratories, computer laboratory simulators, workshops), in the XXI century, the century of globaliza- tion and computerization, have ceased to be the technologies of tomorrow and will contribute to the formation of the information society in our country. Issues connected with functional units of programs, principles of their development as well as efficient using virtual laboratories in thetechnical education are covered. An example of virtual laboratory practical training in the construction material science - the complex of programs imitating laboratory tests of building materials – is presented.

Keywords: virtual laboratory, physical process, imitation-numerical simulation, visualization.

References
1. Belov M.A., Antipov O.E. Testing and measuring system for assessing the quality of teaching in a virtual computer lab. Kachestvo. Innovatsii. Obrazovanie. 2012. No. 3, pp. 28–32. (In Russian).
2. Lesovik V.S. Architectural Geonics. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2013. No. 10, pp. 14–17. (In Russian).
3. Lesovik V. S. Geonika (geomimetika) as the transdisciplinary direction of researches. Vischee obrazovanie v Rossii. 2014. No. 3, рр. 77–83. (In Russian).
4. Solovov A.V. Virtual educational laboratories in engineering education. Тhe Collection of the articles «Industry of Education». Release 2. M.: MGIU. 2002, рр. 386-392. (In Russian).
5. Norenkov I.P., Zimin A.M. Informacionnye tehnologii v obrazovanii [Information technologies in education]. M.: MGTU im. N.Je. Baumana, 2004. 352 p. (In Russian).
6. Belov V.V., Obraztsov I.V. Virtualization of physical processes in the theory and practice of construction education. Materials V of the All-Russian conference of students, graduate students and young scientists «Тhe Theory and practice of increase of efficiency building materials». Penza: PGUAS, 2010, рр. 186–189. (In Russian).
7. Afanasyev, V.O. Research and development of a system for interactive monitoring induced virtual environment (virtual presence) / V.O. Afanasyev, A.G. Brovkin. Kosmonavtika i raketostroenie. 2001. No. 20, pp. 19–21. (In Russian).
8. Kolganov D. A. Unreal physics. Testing of NVIDIA PhysX for SLI Multi-Card configurations. Igromaniya. 2010. No. 2, рр. 162–164. (In Russian).
9. Zhang G., Torquato S. Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. Physical review, E 88. 2013. pp. 053312–1–9.
El_podpiska СИЛИЛИКАТэкс KERAMTEX elibrary interConPan_2021