

УДК 692.23

С.В. ВАВРЕНЮК, д-р техн. наук, член-корр. РААСН, Г.А. КОРАБЛЕВА, канд. техн. наук, О.В. СТАРИКОВА, инженер, Дальневосточный научно-исследовательский, проектно-конструкторский и технологический институт по строительству (ДальНИИС) РААСН (Владивосток)

Использование горелых пород в производстве изделий для ограждающих конструкций

Приведен способ переработки горелой породы с получением заполнителя для бетонной смеси, включающий следующие технологические операции: дробление горелой породы, просеивание с разделением на песчаные и щебеночные фракции и подача в бетоносмеситель в качестве заполнителя бетонной смеси. Предлагаемый метод способствует снижению содержания вредных соединений и органических примесей в заполнителе и позволяет производить оптимизацию состава бетонных смесей для формования строительных изделий с заданными физико-механическими и теплотехническими свойствами. В заводских условиях изготовлена партия стеновых камней, соответствующих требованиям ГОСТа.

Ключевые слова: горелые породы, ограждающие конструкции, заполнитель, полусухое вибропрессование, морозостойкость.

В настоящее время в отечественной практике строительства широко применяются быстровозводимые здания, основой которых является каркас из металлоконструкций или монолитного железобетона с заполнением проемов мелкоштучными изделиями из различных видов бетона.

При выборе стенового материала необходимо учитывать климатические особенности района строительства. В силу сложных климатических условий Дальнего Востока, которые характеризуются неблагоприятными сочетаниями высокой скорости ветра с обильными дождями в летний период, интенсивной солнечной радиацией при отрицательной температуре в зимний период, частыми оттепелями, резкой сменой всех элементов климата в течение года, стеновые изделия должны иметь необходимую долговечность, низкую отпускную влажность и хорошую влагоотдачу, т. е. быстро сохнуть после увлажнения в сезон дождей.

В Приморском крае ощущается дефицит мелких и крупных заполнителей для бетонов; в значительной степени эту проблему можно решить за счет использования отходов угледобычи, углесжигания и ГОКов.

Проблема использования отходов в строительстве заключается в технологической сложности перевода их в сырьевой компонент для производства прежде всего строительных материалов и тем самым расширить сырьевую базу стройиндустрии. Использование отходов в различных отраслях народного хозяйства — это путь повышения его эффективности при уменьшении материальных затрат и трудовых ресурсов (последнее сейчас особенно актуально для Дальнего Востока).

Специалистами ДальНИИС проведены исследования термоизмененной вскрышной породы угледобычи местных

(приморских) в настоящее время закрытых шахт так называемой горелой породы, количество которой в терриконах составляет порядка 3 млн т.

По генетическому признаку горелые породы можно разделить на две группы: к первой относятся вмещающие и сопутствующие породы, представленные осадочными (глинистые сланцы, кремнистые сланцы, песчаники, аргиллиты, алевролиты) и метаморфическими (кристаллические сланцы, кварциты) породами. Эта группа состоит из мелких и слабых разновидностей; ко второй группе - хорошо обожженные, порой до спекания породы. В химическом составе этой породы превалирует Fe₂O₃ - до 56,2%, а содержание SiO₂ в среднем всего 27%. Прочность породы практически равна прочности керамического кирпича. Порода представлена кусками, от мелкого щебня до глыб массой в несколько килограммов. Цвет породы от темно-красного до фиолетового. Таких пород в отвалах и терриконах примерно 3-5%. Практический же интерес представляет более распространенная слабообожженная (не до спекания) порода. Цвет породы от бежевого до темно-розового. В табл. 1 приведен химический состав горелой породы террикоников шахт городов Артема и Партизанска Приморского края.

По сумме оксидов ${\rm SiO_2}$, ${\rm Al_2O_3}$, ${\rm Fe_2O_3}$ порода представляет кислое сырье; незначительное содержание потерь при прокаливании указывает на полноту самообжига.

По минералогическому составу слабообожженные горелые породы относятся к алюмосиликатным с включениями кварца, калиевого полевого шпата, альбита, анортита, флогопита, мусковита, магнетита.

Заполнитель из породы получали двумя способами. По *первому* – порода отобранной пробы дробилась до крупности не более 50 мм; дробленый материал пропускался че-

Таблица 1

Химический состав, мас. %									
SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	CaO	MgO	SO ₃	K₂O	Na ₂ O	ППП
65,83–71,1	17,45–20,4	3,66–4,5	0,64-0,82	1,22–1,9	0,66–1,18	0,03-0,2	2,6–2,67	1,16–1,27	0,2-0,59

12'2013 37

Таблица 2

Способ получения	Полные остатки на ситах, мас. %						
заполнителя	2,5	1,25	0,63	0,315	0,16	менее 0,16	Мк
Первый	25,5	40	54	67,5	80,5	19,5	2,68
Второй	14,9	33,8	49,5	65,1	82,2	17,8	2,5

Таблица 3

Vanauranuarius	Фракция, мм					
Характеристика	0–5	5–10	10–20			
Насыпная плотность, кг/м ³	1050/950	820/875	860/956			
Истинная плотность, г/см ³	2,6/2,48	2,65/2,5	2,65/2,61			
Средняя плотность зерен заполнителя в цементном тесте, кг/л	2,21/–	2,085/-	1,985/–			
Водопотребность песка, %	21/23,2	-	-			
Водопоглощение щебня, %	-	17/20	20/17			
Объем межзерновых пустот, %	-	41/30	43 /62			
Содержание пылевидных, глинистых частиц, %	10/8,5	4,5/1,2	0,75/0,78			
Прочность при сдавливании в цилиндре, МПа	-	1,44/1,3	1,92/2			
Коэффициент размягчения щебня		0,7/0,7	0,8/0,8			
Морозостойкость по потере массы после 3 циклов замораживания-оттаивания, %	После 5 циклов –/8	12/11,1	10,5/15,3			
Содержание пластинчатых и игловатых частиц, %	-	11,5/13,4	10,5/12,3			
Стойкость щебня против – силикатного распада – железистого распада	-	7,5/8,1 2,5/2,1	2,5/2,7 1,5/1,8			
Примечание. Перед чертой – первый способ получения заполнителя; за чертой – второй способ.						

рез сито с размером отверстий 20 мм; прошедшая через сито фракция удалялась как содержащая наиболее слабую и засоренную породу. Материал крупнее 20 мм вторично дробился и рассеивался на фракции 0–5 мм, 5–10 мм, 10–20 мм. По *второму* способу большие куски дробились до крупности не более 50 мм и смешивались с остальной частью отобранной пробы. Весь материал рассевался на три вышеуказанные фракции. Зерновой состав песчаной фракции горелой породы приведен в табл. 2.

Установлено, что по зерновому составу пески из горелой породы вполне пригодны для применения их в бетоне. Песок относится к группе «средних» по ГОСТ 22263—76 «Щебень и песок из пористых горных пород. Технические условия» и по зерновому составу по ГОСТ 9757—90 «Гравий, щебень и песок искусственные пористые. Технические условия» пригоден для конструкционно-теплоизоляционного бетона.

Физико-механические характеристики заполнителя из горелой породы Артемовского террикона приведены в табл. 3. Испытания проводились по ГОСТ 9758–86 «Заполнители пористые неорганические для строительных работ. Методы испытаний».

При оценке пригодности горелой породы для получения конструкционно-теплоизоляционного бетона определяющее значение имеют насыпная плотность, прочность и морозостойкость. По насыпной плотности щебень из горелой породы по ГОСТ 9757–90 и ГОСТ 22263–76 может быть отнесен к маркам 900 и 1000 (фр. 10–20 мм второго способа получения заполнителя), песок – к марке 1000 или 1100, что характеризует их как легкие заполнители. По пределу прочности щебень относится к маркам П150 и П200 по ГОСТ 22263–76, что позволяет использовать его в конструкционно-теплоизоляционных бетонах класса В5 и выше. По морозостойкости щебень не соответствует требованиям стандартов.

При подборе составов бетона опытным путем определяли оптимальное соотношение между собой фракций щебня, песка и смеси щебня. Максимальная плотность крупного заполнителя отмечается у смеси фракций 5–10 и 10–20 мм при соотношении 50:50%, а оптимальное соотношение песка и смеси фракций щебня – при соотношении 40:60%. В качестве вяжущего использовался портландцемент Спасского цементного завода Приморского края марок ПЦ400Д0 (применялся заполнитель, полученный по первому способу) и ПЦ500Д0 (заполнитель, полученный по

В результате исследований было установлено, что получение конструкционнотеплоизоляционных бетонов с маркой по морозостойкости F≥50 возможно лишь при использовании метода полусухого вибропрессования. Так, например, морозостойкость бетона, полученного из жестких смесей (Ж2) с В/Ц 1,2–1,9, составляла не более 35 циклов. При этом бетоны классов В3,5 — В7,5 имели плотность в сухом состоянии 1500–1600 кг/м³.

Снижение количества воды затворения (на 40–60%) до полусухого состояния фор-

мовочной смеси позволило получить бетоны на класс выше – В10 и маркой по морозостойкости не менее F50.

второму способу).

Следует отметить, что изделия из горелой породы быстро высыхают. Снижение влажности пустотелых камней при относительной влажности воздуха 60–70% через месяц после полного насыщения: из бетона с горелой породой — на 15,7%; из пенобетона — на 12,4%; из керамзитобетона — на 8,5%; из бетона на щебне из плотной горной породы — на 4,8%; из пескобетона — на 4,7%.

С применением разработанного состава бетона в заводских условиях методом полусухого прессования изготовлена партия бетонных стеновых пустотелых камней марок по прочности М50, М75, массой от 16 до 18 кг, плотностью в сухом состоянии 1500—1600 кг/м³. По всем характеристикам камни соответствуют требованиям ГОСТ 6133—99 «Камни бетонные стеновые. Технические условия».

Список литературы

- Вавренюк С.В., Кораблева Г.А. Вулканические породы Дальнего Востока как сырье для производства природных пористых заполнителей в бетоны // Технологии бетонов. 2009. № 5. С. 16–17.
- 2. Вавренюк С.В., Кораблева Г.А., Антропова В.А. Бетоны на пористых заполнителях из вулканических горных пород Дальнего Востока. Владивосток: Издательский дом Дальневосточного федерального университета. 2012. 100 с.
- Патент РФ на изобретение № 2462425. Способ переработки горелой породы с получением заполнителя для бетонной смеси и бетонная смесь с использованием такого заполнителя / В.В. Слободкин, С.В. Вавренюк, А.Н. Павельев. Опубл. 27.09.2012. Бюл. № 27.