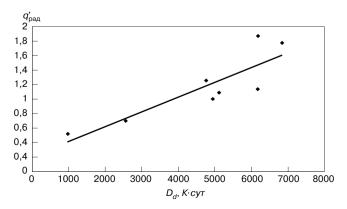
УДК 621.316:66.013.514

О.Д. САМАРИН, канд. техн. наук (samarin1@mtu-net.ru), Московский государственный строительный университет

Нормирование энергопотребления здания с учетом теплопоступлений от солнечной радиации

Рассмотрена зависимость удельной характеристики теплопоступлений от солнечной радиации от климатических параметров района строительства. Предложена таблица базовой удельной характеристики расхода тепловой энергии для жилых зданий с учетом полученной зависимости. Дан анализ влияния изменения теплопоступлений от солнечной радиации на нормируемое удельное энергопотребление зданий.

Ключевые слова: энергопотребление, теплопоступления, солнечная радиация, градусо-сутки, отопительный период.


Как известно, в настоящее время производится пересмотр нормативной базы в области строительства, в том числе СНиП 23-02–2003 «Тепловая защита зданий» для приведения его в соответствие с изменившимися требованиями законодательства, в первую очередь Закона РФ № 384-ФЗ «Технический регламент «О безопасности зданий и сооружений» от 30 декабря 2009 г. и Закона РФ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» № 261-ФЗ от 23 ноября 2009 г. В указанной ситуации рассмотрим некоторые обстоятельства, которые следовало бы учесть при дальнейшем совершенствовании этого документа.

Основные элементы методики оценки и нормирования энергопотребления здания, разработанные для проекта СНиП 23-02–2003, изложены в [1]. Данная методика сводится главным образом к вычислению удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания $q_{\rm ot}^p$, ${\rm BT/(m^3 \cdot K)}$ и сравнению ее с базовым значением $q_{\rm ot}^p$. При этом в числе других величин используется и удельная характеристика теплопоступлений от солнечной радиации $k_{\rm pag}$, ${\rm BT/(m^3 \cdot K)}$.

В [2] было предложено некоторое уточнение подхода, представленного в [1], а именно нормирование требуемой величины $q_{
m or}^{
m TP}$ в зависимости от отапливаемого объема здания $V_{_{\! \! P}}$, м³, а не от его этажности. При этом параметр $k_{\mbox{\tiny pag}}$ был оценен ориентировочно, с использованием имеющихся данных по среднему коэффициенту остекления жилых зданий (около 0,18) и усредненным по ориентациям фасадов суммарным удельным теплопоступлениям от солнечной радиации за отопительный период $q_{\mathrm{pag}}^{\mathrm{r}}$ (порядка 400 МДж/м²), откуда получается $k_{\rm pag} = 50/D_d$. Для образовательных учреждений с учетом иной остекленности числовой коэффициент в полученном выражении будет несколько выше - около 70. Можно показать, что и для общественных зданий другого назначения вид формулы для $k_{\scriptscriptstyle{\mathrm{par}}}$ будет аналогичным. Это можно объяснить тем, что для перехода к необходимой размерности Вт/(м3.К) общие теплопоступления необходимо делить на продолжительность рассматриваемого периода, в данном случае отопительного, и на среднюю разность температур внутреннего и наружного воздуха, т. е. в конечном счете именно на градусо-сутки отопительного периода D_x \mathbf{K} -сут.

Однако при более точном анализе необходимо учитывать, что величина $q_{\mathrm{pan}}^{\scriptscriptstyle \Gamma}$ определенным образом зависит от района строительства, и главным образом от его географической широты. Попытаемся выявить характер такой зависимости и оценить степень ее влияния на величину нормируемой удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания $q_{
m or}^{
m TP}$. Для этого можно воспользоваться данными из справочного пособия (Е.Г. Малявина. Теплопотери здания. М.: АВОК-ПРЕСС, 2007. 144 с.) по значениям $q_{\text{рал}}^{\text{г}}$, МДж/м², с учетом средних условий облачности для различных населенных пунктов РФ. Поскольку ранее уже были получены соотношения для $k_{\scriptscriptstyle{\mathrm{pa}\pi}}$ исходя из климатических условий Москвы, для упрощения дальнейшего рассмотрения целесообразно найти только поправку к ним, зависящую от района строительства. На рисунке представлена корреляционная связь отношения $q_{
m paд}^{\, {}_{}} = q_{
m pag}^{\, {}_{}}/q_{
m pag,M}^{\, {}_{}}$, где $q_{
m pag,M}^{\, {}_{}} -$ величина $q_{
m pag}^{\, {}_{}}$ для Москвы, и основного параметра, определяющего особенности наружного климата в холодный период года, т. е. D_{d} . Их значения вычислялись по данным СНиП 23-01-99* «Строительная климатология».

Легко видеть, что несмотря на некоторый разброс точек, зависимость между $q_{\mathrm{pag}}^{'}$ и $D_{_{d}}$ прослеживается достаточно

Поле корреляции для параметров q'_{pag} и D_d

Таблица 1

$V_{_h}$, ${ m M}^3$	Значения $q_{ m or}^{ m TP}$, Вт/(м 3 ·K), при различных D_d , K·сут					
	1000	3000	5000	8000	12000	
300	1,050	0,863	0,729	0,602	0,501	
600	0,832	0,703	0,602	0,505	0,428	
1200	0,664	0,579	0,503	0,429	0,37	
2500	0,532	0,481	0,426	0,37	0,325	
6000	0,427	0,403	0,363	0,322	0,289	
15000	0,357	0,351	0,322	0,29	0,265	
50000	0,302	0,31	0,289	0,266	0,246	
200000	0,293	0,285	0,27	0,252	0,235	

четко, причем коэффициент корреляции в данном случае оказывается весьма высоким и составляет около 0,86, что говорит о практической достоверности полученных результатов.

С удовлетворительной точностью можно предложить следующую аппроксимирующую формулу:

$$q'_{\text{pax}} = 0.2 \left(\frac{D_d}{1000} + 1 \right)$$
 (1)

Иначе говоря, в районах с более суровым климатом относительные суммарные теплопритоки за счет солнечной радиации оказываются выше, чем на юге. Несмотря на кажущуюся парадоксальность такого вывода, его можно объяснить тем, что продолжительность отопительного периода в северных регионах возрастает быстрее, чем падают мгновенные теплопоступления из-за уменьшения высоты стояния солнца и сокращения светового дня в зимний период. Кроме того, в моменты, близкие к началу и окончанию отопительного сезона (сентябрь и апрель—май), долгота дня, напротив, к северу даже увеличивается, так что длительность инсоляции растет.

В табл. 1 приведены уточненные значения $q_{
m or}^{
m Tp}$ для жилых зданий с учетом выявленной закономерности изменения $k_{
m pag}$, а в табл. 2 для сравнения – исходный уровень, полученный автором в [2] (без учета поправки к $k_{
m pag}$).

Нетрудно заметить, что при малых D_d уточненная нормируемая величина $q_{
m or}^{
m Tp}$ будет несколько выше, чем при условии $k_{\rm pag} = {\rm const}/D_d$, а при больших – наоборот, ниже. Это немедленно следует из правила для вычисления $q_{\rm or}^{\rm TP}$ приведенного в [1], так как составляющая $k_{\mbox{\tiny pag}}$ входит в расчетную формулу со знаком «минус». Однако относительное расхождение между данными таблиц 1 и 2 в целом невелико, и при $D_{a} \ge 3000$ не превышает ±2,5%, а, как правило, оказывается даже меньше, заведомо оставаясь в пределах точности инженерного расчета. Это связано с не слишком значительной долей теплопоступлений от солнечной радиации в общем тепловом балансе здания, которая обычно не превышает 10-15% [3, 4]. И только при D_{J} =1000 и объеме здания более 2500 м³ отклонение увеличивается до 5% и более. Но значения $D_{d} \approx 1000$ на территории РФ, по данным СНиП 23-01-2003, встречаются только на очень ограниченной территории в районе Сочи. Поэтому представляется, что учет изменения числового коэффициента в выражении для $k_{\mbox{\tiny pag}}$ в зависимости от $D_{\mbox{\tiny d}}$ хотя и возможен, но вряд ли целесообразен из-за чрезвычайной малости получаемого при этом эффекта.

Приведенные результаты получены в рамках выполнения работ по Госконтракту ГК № 16.552.11.7064 от 13.07.2012 г.

Таблица 2

$V_{_h}$, ${\sf M}^3$	Значения $q_{ m or}^{ m Tp}$, Вт/(м 3 ·K), при различных D_d , K-сут					
	1000	3000	5000	8000	12000	
300	1,025	0,861	0,731	0,606	0,507	
600	0,807	0,7	0,604	0,509	0,433	
1200	0,639	0,576	0,505	0,433	0,376	
2500	0,507	0,478	0,428	0,374	0,331	
6000	0,402	0,4	0,365	0,327	0,295	
15000	0,332	0,348	0,324	0,295	0,271	
50000	0,277	0,308	0,291	0,271	0,252	
200000	0,268	0,282	0,272	0,256	0,241	

Список литературы

- Гагарин В.Г., Козлов В.В. Требования к теплозащите и энергетической эффективности в проекте актуализированного СНиП «Тепловая защита зданий» // Жилищное строительство, 2011. № 8, С. 2–6.
- 2. *Самарин О.Д*. Предложения по совершенствованию актуализированной редакции СНиП 23-02 // Жилищное строительство. 2012. № 6. С. 13–15.
- Самарин О.Д., Лушин К.И. Об энергетическом балансе жилых зданий // Новости теплоснабжения. 2007. № 8. С. 44–46
- Самарин О.Д., Зайцев Н.Н. Влияние ориентации остекленных фасадов на суммарное энергопотребление жилых зданий // Инженерно-строительный журнал. 2010.
 № 8. С. 16–20.

